Papers
Topics
Authors
Recent
Search
2000 character limit reached

InverseMatrixVT3D: An Efficient Projection Matrix-Based Approach for 3D Occupancy Prediction

Published 23 Jan 2024 in cs.CV and cs.RO | (2401.12422v2)

Abstract: This paper introduces InverseMatrixVT3D, an efficient method for transforming multi-view image features into 3D feature volumes for 3D semantic occupancy prediction. Existing methods for constructing 3D volumes often rely on depth estimation, device-specific operators, or transformer queries, which hinders the widespread adoption of 3D occupancy models. In contrast, our approach leverages two projection matrices to store the static mapping relationships and matrix multiplications to efficiently generate global Bird's Eye View (BEV) features and local 3D feature volumes. Specifically, we achieve this by performing matrix multiplications between multi-view image feature maps and two sparse projection matrices. We introduce a sparse matrix handling technique for the projection matrices to optimize GPU memory usage. Moreover, a global-local attention fusion module is proposed to integrate the global BEV features with the local 3D feature volumes to obtain the final 3D volume. We also employ a multi-scale supervision mechanism to enhance performance further. Extensive experiments performed on the nuScenes and SemanticKITTI datasets reveal that our approach not only stands out for its simplicity and effectiveness but also achieves the top performance in detecting vulnerable road users (VRU), crucial for autonomous driving and road safety. The code has been made available at: https://github.com/DanielMing123/InverseMatrixVT3D

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.