Efficient Paths for Local Counterdiabatic Driving (2401.12287v2)
Abstract: Local counterdiabatic driving (CD) provides a feasible approach for realizing approximate reversible/adiabatic processes like quantum state preparation using only local controls and without demanding excessively long protocol times. However, in many instances getting high accuracy of such CD protocols requires engineering very complicated new controls or pulse sequences. In this work, we describe a systematic method for altering the adiabatic path by adding extra local controls along which performance of local CD protocols is enhanced, both close to and far away from the adiabatic limit. We also identify an iterative procedure to improve the performance of local counterdiabatic driving further without any knowledge of the quantum wavefunction. We then show that these methods provides dramatic improvement in the preparation of non-trivial GHZ ground states of several different spin systems with both short-range and long-range interactions.
- Sandrine van Frank, Marie Bonneau, Jörg Schmiedmayer, Sebastian Hild, Christian Gross, Marc Cheneau, Immanuel Bloch, Thomas Pichler, Antonio Negretti, Thommaso Calarco, et al., “Optimal control of complex atomic quantum systems,” Scientific reports 6, 34187 (2016).
- C. Senko, P. Richerme, J. Smith, A. Lee, I. Cohen, A. Retzker, and C. Monroe, “Realization of a quantum integer-spin chain with controllable interactions,” Phys. Rev. X 5, 021026 (2015).
- Phila Rembold, Nimba Oshnik, Matthias M. Müller, Simone Montangero, Tommaso Calarco, and Elke Neu, “Introduction to quantum optimal control for quantum sensing with nitrogen-vacancy centers in diamond,” AVS Quantum Science 2, 024701 (2020), https://pubs.aip.org/avs/aqs/article-pdf/doi/10.1116/5.0006785/13962349/024701_1_online.pdf .
- D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot, and J. G. Muga, “Shortcuts to adiabaticity: Concepts, methods, and applications,” Rev. Mod. Phys. 91, 045001 (2019).
- Mustafa Demirplak and Stuart A. Rice, “Adiabatic population transfer with control fields,” The Journal of Physical Chemistry A 107, 9937–9945 (2003), https://doi.org/10.1021/jp030708a .
- Mustafa Demirplak and Stuart A. Rice, “Assisted adiabatic passage revisited,” The Journal of Physical Chemistry B 109, 6838–6844 (2005), pMID: 16851769.
- M V Berry, “Transitionless quantum driving,” Journal of Physics A: Mathematical and Theoretical 42, 365303 (2009).
- Andreas Hartmann and Wolfgang Lechner, “Rapid counter-diabatic sweeps in lattice gauge adiabatic quantum computing,” New Journal of Physics 21, 043025 (2019).
- Jonathan Wurtz and Peter J. Love, “Counterdiabaticity and the quantum approximate optimization algorithm,” Quantum 6, 635 (2022).
- P. Chandarana, N. N. Hegade, K. Paul, F. Albarrán-Arriagada, E. Solano, A. del Campo, and Xi Chen, “Digitized-counterdiabatic quantum approximate optimization algorithm,” Phys. Rev. Res. 4, 013141 (2022).
- Paul Manuel Schindler and Marin Bukov, “Counterdiabatic driving for periodically driven systems,” (2023), arXiv:2310.02728 [quant-ph] .
- Dries Sels and Anatoli Polkovnikov, “Minimizing irreversible losses in quantum systems by local counterdiabatic driving,” Proceedings of the National Academy of Sciences 114, E3909–E3916 (2017), https://www.pnas.org/doi/pdf/10.1073/pnas.1619826114 .
- Pieter W. Claeys, Mohit Pandey, Dries Sels, and Anatoli Polkovnikov, “Floquet-engineering counterdiabatic protocols in quantum many-body systems,” Phys. Rev. Lett. 123, 090602 (2019).
- D. Stefanatos and E. Paspalakis, “A shortcut tour of quantum control methods for modern quantum technologies,” Europhysics Letters 132, 60001 (2021).
- Ieva Čepaitė, Anatoli Polkovnikov, Andrew J. Daley, and Callum W. Duncan, “Counterdiabatic optimized local driving,” PRX Quantum 4, 010312 (2023).
- Tamiro Villazon, Anatoli Polkovnikov, and Anushya Chandran, “Swift heat transfer by fast-forward driving in open quantum systems,” Physical Review A 100 (2019), 10.1103/physreva.100.012126.
- Nik O. Gjonbalaj, David K. Campbell, and Anatoli Polkovnikov, “Counterdiabatic driving in the classical β𝛽\betaitalic_β-fermi-pasta-ulam-tsingou chain,” Phys. Rev. E 106, 014131 (2022).
- J J Sakurai and Jim Napolitano, Modern Quantum Mechanics (Cambridge University Press, 2017).
- Michael Kolodrubetz, Dries Sels, Pankaj Mehta, and Anatoli Polkovnikov, “Geometry and non-adiabatic response in quantum and classical systems,” Physics Reports 697, 1–87 (2017), geometry and non-adiabatic response in quantum and classical systems.
- Mohit Pandey, Pieter W. Claeys, David K. Campbell, Anatoli Polkovnikov, and Dries Sels, “Adiabatic eigenstate deformations as a sensitive probe for quantum chaos,” Phys. Rev. X 10, 041017 (2020).
- Kazutaka Takahashi and Adolfo del Campo, “Shortcuts to adiabaticity in krylov space,” (2023), arXiv:2302.05460 [quant-ph] .
- Budhaditya Bhattacharjee, “A lanczos approach to the adiabatic gauge potential,” (2023), arXiv:2302.07228 [quant-ph] .
- Dries Sels and Anatoli Polkovnikov, “Thermalization of dilute impurities in one-dimensional spin chains,” Physical Review X 13 (2023), 10.1103/physrevx.13.011041.
- Philipp Hauke, Helmut G Katzgraber, Wolfgang Lechner, Hidetoshi Nishimori, and William D Oliver, “Perspectives of quantum annealing: methods and implementations,” Reports on Progress in Physics 83, 054401 (2020).
- S. Sachdev, Quantum phase transitions, second ed. ed. (Cambridge University Press, Cambridge, 2011).
- Adolfo del Campo, Marek M. Rams, and Wojciech H. Zurek, “Assisted finite-rate adiabatic passage across a quantum critical point: Exact solution for the quantum ising model,” Physical Review Letters 109 (2012), 10.1103/physrevlett.109.115703.
- Bogdan Damski, “Counterdiabatic driving of the quantum ising model,” Journal of Statistical Mechanics: Theory and Experiment 2014, P12019 (2014).
- M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N. Goldman, “Measuring the chern number of hofstadter bands with ultracold bosonic atoms,” Nature Physics 11, 162–166 (2014).
- Marko Ljubotina, Barbara Roos, Dmitry A. Abanin, and Maksym Serbyn, “Optimal steering of matrix product states and quantum many-body scars,” PRX Quantum 3 (2022), 10.1103/prxquantum.3.030343.
- Steffen J. Glaser, Ugo Boscain, Tommaso Calarco, Christiane P. Koch, Walter Köckenberger, Ronnie Kosloff, Ilya Kuprov, Burkhard Luy, Sophie Schirmer, Thomas Schulte-Herbrüggen, Dominique Sugny, and Frank K. Wilhelm, “Training schrödinger’s cat: quantum optimal control: Strategic report on current status, visions and goals for research in europe,” The European Physical Journal D 69 (2015), 10.1140/epjd/e2015-60464-1.
- Marin Bukov, Alexandre G. R. Day, Dries Sels, Phillip Weinberg, Anatoli Polkovnikov, and Pankaj Mehta, “Reinforcement learning in different phases of quantum control,” Phys. Rev. X 8, 031086 (2018).
- Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger, “Going beyond bell’s theorem,” (2007), arXiv:0712.0921 [quant-ph] .
- T.C. Farrar and E.D. Becker, Pulse and Fourier Transform NMR: Introduction to Theory and Methods (Elsevier Science, 1971).
- Thomas Koffel, M. Lewenstein, and Luca Tagliacozzo, “Entanglement Entropy for the Long-Range Ising Chain in a Transverse Field,” Physical Review Letters 109, 267203 (2012).
- Daniel Jaschke, Kenji Maeda, Joseph D. Whalen, Michael L. Wall, and Lincoln D. Carr, “Critical Phenomena and Kibble-Zurek Scaling in the Long-Range Quantum Ising Chain,” New Journal of Physics 19, 033032 (2017), arxiv:1612.07437 [cond-mat, physics:quant-ph] .
- Patrick Adelhardt, Jan Alexander Koziol, Andreas Schellenberger, and Kai Phillip Schmidt, “Quantum criticality and excitations of a long-range anisotropic XY chain in a transverse field,” Physical Review B 102, 174424 (2020).
- Masahiro Kitagawa and Masahito Ueda, “Squeezed spin states,” Physical Review A 47, 5138–5143 (1993).
- C. K. Law, H. T. Ng, and P. T. Leung, “Coherent control of spin squeezing,” Physical Review A 63, 055601 (2001).
- A. G. Rojo, “Optimally squeezed spin states,” Physical Review A 68, 013807 (2003).
- Anders Sorensen and Klaus Molmer, “Entanglement and Extreme Spin Squeezing,” Physical Review Letters 86, 4431–4434 (2001), arxiv:quant-ph/0011035 .
- D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, “Spin squeezing and reduced quantum noise in spectroscopy,” Physical Review A 46, R6797–R6800 (1992).
- J. J . Bollinger, Wayne M. Itano, D. J. Wineland, and D. J. Heinzen, “Optimal frequency measurements with maximally correlated states,” Physical Review A 54, R4649–R4652 (1996).
- Phillip Weinberg and Marin Bukov, “QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems part I: spin chains,” SciPost Phys. 2, 003 (2017).
- Phillip Weinberg and Marin Bukov, “QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems. Part II: bosons, fermions and higher spins,” SciPost Phys. 7, 020 (2019).
- M. J. D. Powell, “An efficient method for finding the minimum of a function of several variables without calculating derivatives,” The Computer Journal 7, 155–162 (1964), https://academic.oup.com/comjnl/article-pdf/7/2/155/959784/070155.pdf .
- Alexandre G. R. Day, Marin Bukov, Phillip Weinberg, Pankaj Mehta, and Dries Sels, “Glassy phase of optimal quantum control,” Phys. Rev. Lett. 122, 020601 (2019).