Papers
Topics
Authors
Recent
Search
2000 character limit reached

Univalent Enriched Categories and the Enriched Rezk Completion

Published 22 Jan 2024 in cs.LO and math.CT | (2401.11752v4)

Abstract: Enriched categories are categories whose sets of morphisms are enriched with extra structure. Such categories play a prominent role in the study of higher categories, homotopy theory, and the semantics of programming languages. In this paper, we study univalent enriched categories. We prove that all essentially surjective and fully faithful functors between univalent enriched categories are equivalences, and we show that every enriched category admits a Rezk completion. Finally, we use the Rezk completion for enriched categories to construct univalent enriched Kleisli categories.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.