Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention on Personalized Clinical Decision Support System: Federated Learning Approach (2401.11736v1)

Published 22 Jan 2024 in cs.LG and cs.AI

Abstract: Health management has become a primary problem as new kinds of diseases and complex symptoms are introduced to a rapidly growing modern society. Building a better and smarter healthcare infrastructure is one of the ultimate goals of a smart city. To the best of our knowledge, neural network models are already employed to assist healthcare professionals in achieving this goal. Typically, training a neural network requires a rich amount of data but heterogeneous and vulnerable properties of clinical data introduce a challenge for the traditional centralized network. Moreover, adding new inputs to a medical database requires re-training an existing model from scratch. To tackle these challenges, we proposed a deep learning-based clinical decision support system trained and managed under a federated learning paradigm. We focused on a novel strategy to guarantee the safety of patient privacy and overcome the risk of cyberattacks while enabling large-scale clinical data mining. As a result, we can leverage rich clinical data for training each local neural network without the need for exchanging the confidential data of patients. Moreover, we implemented the proposed scheme as a sequence-to-sequence model architecture integrating the attention mechanism. Thus, our objective is to provide a personalized clinical decision support system with evolvable characteristics that can deliver accurate solutions and assist healthcare professionals in medical diagnosing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things for smart cities,” IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22–32, feb 2014.
  2. C. M. Thwal, K. Thar, and C. S. Hong, “Edge ai based waste management system for smart city,” Journal of the Korean Information Science Society, pp. 403–405, Jun. 2019. [Online]. Available: http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE08763198
  3. C. M. Thwal and C. S. Hong, “A uav-assisted intelligent delivery system for smart city,” Journal of the Korean Information Science Society, pp. 314–316, Dec. 2019. [Online]. Available: http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09301572
  4. Y. L. Tun and C. S. Hong, “An edge-based vehicle surveillance system for enforcing vehicle restriction policies,” Journal of the Korean Information Science Society, pp. 341–343, Dec. 2019. [Online]. Available: http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09301581
  5. S. P. Mohanty, U. Choppali, and E. Kougianos, “Everything you wanted to know about smart cities: The internet of things is the backbone,” IEEE Consumer Electronics Magazine, vol. 5, no. 3, pp. 60–70, jul 2016.
  6. “Disease outbreak news (dons),” Sep 2020. [Online]. Available: https://www.who.int/csr/don/en/
  7. “Preventing epidemics and pandemics.” [Online]. Available: https://www.who.int/activities/preventing-epidemics-and-pandemics
  8. J. Liu, X. Kong, F. Xia, X. Bai, L. Wang, Q. Qing, and I. Lee, “Artificial intelligence in the 21st century,” IEEE Access, vol. 6, pp. 34 403–34 421, 2018.
  9. V. Carchiolo, A. Longheu, G. Reitano, and L. Zagarella, “Medical prescription classification: a NLP-based approach,” in Proceedings of the 2019 Federated Conference on Computer Science and Information Systems.   IEEE, sep 2019.
  10. S. Dash, S. K. Shakyawar, M. Sharma, and S. Kaushik, “Big data in healthcare: management, analysis and future prospects,” Journal of Big Data, vol. 6, no. 1, jun 2019.
  11. J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang, “Federated learning for healthcare informatics,” 2019.
  12. Y.-L. Lee, P.-K. Tsung, and M. Wu, “Techology trend of edge AI,” in 2018 International Symposium on VLSI Design, Automation and Test (VLSI-DAT).   IEEE, apr 2018.
  13. T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future directions,” IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50–60, may 2020.
  14. T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis, and W. Shi, “Federated learning of predictive models from federated electronic health records,” International Journal of Medical Informatics, vol. 112, pp. 59–67, apr 2018.
  15. O. Choudhury, A. Gkoulalas-Divanis, T. Salonidis, I. Sylla, Y. Park, G. Hsu, and A. Das, “Differential privacy-enabled federated learning for sensitive health data,” 2019.
  16. T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neural machine translation,” in Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.   Association for Computational Linguistics, 2015.
  17. K. Thar, K. T. Kim, Y. L. Tun, C. M. Thwal, and C. S. Hong, “Evolvable symptom-disease investigator for smart healthcare decision support system,” Journal of the Korean Information Science Society, pp. 578–580, Jul. 2020. [Online]. Available: http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE09874510
  18. D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” 2014.
  19. M. Xie, G. Long, T. Shen, T. Zhou, X. Wang, and J. Jiang, “Multi-center federated learning,” 2020.
  20. Aniruddha-Tapas, “Aniruddha-tapas/predicting-diseases-from-symptoms,” Apr 2017. [Online]. Available: https://github.com/Aniruddha-Tapas/Predicting-Diseases-From-Symptoms/tree/master/Manual-Data
  21. X. Wang, A. Chused, N. Elhadad, C. Friedman, and M. Markatou, “Automated knowledge acquisition from clinical narrative reports,” Journal of the American Medical Informatics Association, pp. 783–787, Nov. 2008.
  22. C. Friedman, L. Shagina, Y. Lussier, and G. Hripcsak, “Automated encoding of clinical documents based on natural language processing,” Journal of the American Medical Informatics Association, vol. 11, no. 5, pp. 392–402, sep 2004.
  23. D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-to-end attention-based large vocabulary speech recognition,” 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Mar 2016. [Online]. Available: http://dx.doi.org/10.1109/ICASSP.2016.7472618
  24. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” 2016.
Citations (20)

Summary

We haven't generated a summary for this paper yet.