Gapless symmetry-protected topological phases and generalized deconfined critical points from gauging a finite subgroup (2401.11702v2)
Abstract: Gauging a finite subgroup of a global symmetry can map conventional phases and phase transitions to unconventional ones. In this work, we study, as a concrete example, an emergent $\mathbb{Z}_2$-gauged system with global symmetry $U(1)$, namely, the $\mathbb{Z}_2$-gauged Bose-Hubbard model both in 1-D and in 2-D. In certain limits, there is an emergent mixed 't Hooft anomaly between the quotient $\tilde{U}(1)$ symmetry and the dual $\hat{\mathbb{Z}}_2$ symmetry. In 1-D, the superfluid phase is mapped to an intrinsically gapless symmetry-protected topological (SPT) phase, as supported by density-matrix renormalization group (DMRG) calculations. In 2-D, the original superfluid-insulator transition becomes a generalized deconfined quantum critical point (DQCP) between a gapless SPT phase, where a SPT order coexists with Goldstone modes, and a $\tilde{U}(1)$-symmetry-enriched topological (SET) phase. We also discuss the stability of these phases and the critical points to small perturbations and their potential experimental realizations. Our work demonstrates that partial gauging is a simple and yet powerful approach in constructing novel phases and quantum criticalities.
- T. Senthil, Deconfined quantum critical points: a review, arXiv:2306.12638 (2023), 2306.12638 .
- X.-G. Wen, Quantum field theory of many-body systems: from the origin of sound to an origin of light and electrons (Oxford University Press, New York, 2004).
- M. Levin and T. Senthil, Deconfined quantum criticality and Néel order via dimer disorder, Phys. Rev. B 70, 220403 (2004).
- M. A. Metlitski and R. Thorngren, Intrinsic and emergent anomalies at deconfined critical points, Phys. Rev. B 98, 085140 (2018).
- X.-G. Wen, Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders, Phys. Rev. D 88, 045013 (2013).
- A. Vishwanath and T. Senthil, Physics of three-dimensional bosonic topological insulators: Surface-deconfined criticality and quantized magnetoelectric effect, Phys. Rev. X 3, 011016 (2013).
- A. Kapustin and R. Thorngren, Anomalous discrete symmetries in three dimensions and group cohomology, Phys. Rev. Lett. 112, 231602 (2014a).
- A. Kapustin and R. Thorngren, Anomalies of discrete symmetries in various dimensions and group cohomology, arXiv:1404.3230 (2014b), 1404.3230 .
- T. Senthil, Symmetry-protected topological phases of quantum matter, Annu. Rev. Condens. Matter Phys. 6, 299 (2015).
- E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys. 88, 035001 (2016).
- A. Keselman and E. Berg, Gapless symmetry-protected topological phase of fermions in one dimension, Phys. Rev. B 91, 235309 (2015).
- T. Scaffidi, D. E. Parker, and R. Vasseur, Gapless symmetry-protected topological order, Phys. Rev. X 7, 041048 (2017).
- R. Verresen, N. G. Jones, and F. Pollmann, Topology and edge modes in quantum critical chains, Phys. Rev. Lett. 120, 057001 (2018).
- R. Verresen, J. Bibo, and F. Pollmann, Quotient symmetry protected topological phenomena, arXiv:2102.08967 (2021b), 2102.08967 .
- R. Thorngren, A. Vishwanath, and R. Verresen, Intrinsically gapless topological phases, Phys. Rev. B 104, 075132 (2021).
- L. Li, M. Oshikawa, and Y. Zheng, Decorated defect construction of gapless-SPT states, arXiv:2204.03131 (2022), 2204.03131 .
- R. Wen and A. C. Potter, Bulk-boundary correspondence for intrinsically gapless symmetry-protected topological phases from group cohomology, Phys. Rev. B 107, 245127 (2023).
- L. Li, M. Oshikawa, and Y. Zheng, Intrinsically/purely gapless-SPT from non-invertible duality transformations, arXiv:2307.04788 (2023a), 2307.04788 .
- J. McGreevy, Generalized symmetries in condensed matter, Annu. Rev. Condens. Matter Phys 14, 57 (2023).
- S. Schafer-Nameki, ICTP lectures on (non-) invertible generalized symmetries, arXiv:2305.18296 (2023), 2305.18296 .
- S.-H. Shao, What’s done cannot be undone: TASI lectures on non-invertible symmetry, arXiv:2308.00747 (2023), 2308.00747 .
- E. Fradkin and S. H. Shenker, Phase diagrams of lattice gauge theories with Higgs fields, Phys. Rev. D 19, 3682 (1979).
- M. Levin and Z.-C. Gu, Braiding statistics approach to symmetry-protected topological phases, Phys. Rev. B 86, 115109 (2012).
- Y. Tachikawa, On gauging finite subgroups, SciPost Phys. 8, 015 (2020).
- J. Wang, X.-G. Wen, and E. Witten, Symmetric gapped interfaces of SPT and SET states: Systematic constructions, Phys. Rev. X 8, 031048 (2018).
- L. Su, Boundary criticality via gauging finite subgroups: a case study on the clock model, arXiv:2306.02976 (2023), 2306.02976 .
- C. Zhang and M. Levin, Exactly solvable model for a deconfined quantum critical point in 1d, Phys. Rev. Lett. 130, 026801 (2023).
- V. Berezinskii, Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. classical systems, Sov. Phys. JETP 32, 493 (1971).
- J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C: Solid State Phys. 6, 1181 (1973).
- V. A. Kashurnikov and B. V. Svistunov, Exact diagonalization plus renormalization-group theory: Accurate method for a one-dimensional superfluid-insulator-transition study, Phys. Rev. B 53, 11776 (1996).
- T. D. Kühner and H. Monien, Phases of the one-dimensional Bose-Hubbard model, Phys. Rev. B 58, R14741 (1998).
- T. D. Kühner, S. R. White, and H. Monien, One-dimensional Bose-Hubbard model with nearest-neighbor interaction, Phys. Rev. B 61, 12474 (2000).
- N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17, 1133 (1966).
- M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor Software Library for Tensor Network Calculations, SciPost Phys. Codebases , 4 (2022).
- The reader may treat it simply as a wedge product.
- D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, Commun. Math. Phys. 383, 1669 (2021).
- P. Ginsparg, Applied conformal field theory, arXiv hep-th/9108028 (1988), 9108028 .
- P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A: Math. Theor. 42, 504005 (2009).
- W. Ji, S.-H. Shao, and X.-G. Wen, Topological transition on the conformal manifold, Phys. Rev. Res. 2, 033317 (2020).
- B. Swingle and T. Senthil, Structure of entanglement at deconfined quantum critical points, Phys. Rev. B 86, 155131 (2012).
- S. B. Bravyi and A. Y. Kitaev, Quantum codes on a lattice with boundary, arXiv quant-ph/9811052 (1998), 9811052 .
- M. B. Hastings and X.-G. Wen, Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance, Phys. Rev. B 72, 045141 (2005).
- E. Lake, Higher-form symmetries and spontaneous symmetry breaking, arXiv:1802.07747 (2018), 1802.07747 .
- Y.-C. Wang, M. Cheng, and Z. Y. Meng, Scaling of the disorder operator at (2+1)d21𝑑(2+1)d( 2 + 1 ) italic_d U(1)𝑈1{U}(1)italic_U ( 1 ) quantum criticality, Phys. Rev. B 104, L081109 (2021).
- L. V. Delacrétaz, D. M. Hofman, and G. Mathys, Superfluids as higher-form anomalies, SciPost Phys. 8, 047 (2020).
- S. D. Pace, Emergent generalized symmetries in ordered phases, arXiv:2308.05730 (2023), 2308.05730 .
- D. V. Else, Topological goldstone phases of matter, Phys. Rev. B 104, 115129 (2021).
- A. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003).
- A. Kitaev and L. Kong, Models for gapped boundaries and domain walls, Commun. Math. Phys. 313, 351 (2012).
- X.-C. Wu, W. Ji, and C. Xu, Categorical symmetries at criticality, J. Stat. Mech. 2021, 073101 (2021a).
- X.-C. Wu, C.-M. Jian, and C. Xu, Universal features of higher-form symmetries at phase transitions, SciPost Phys. 11, 033 (2021b).
- S. V. Isakov, R. G. Melko, and M. B. Hastings, Universal signatures of fractionalized quantum critical points, Science 335, 193 (2012).
- M. A. Metlitski and T. Grover, Entanglement entropy of systems with spontaneously broken continuous symmetry, arXiv:1112.5166 (2011), 1112.5166 .
- A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96, 110404 (2006).
- M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96, 110405 (2006).
- A. Jamadagni, H. Weimer, and A. Bhattacharyya, Robustness of topological order in the toric code with open boundaries, Phys. Rev. B 98, 235147 (2018).
- S. D. Pace and X.-G. Wen, Exact emergent higher-form symmetries in bosonic lattice models, Phys. Rev. B 108, 195147 (2023).
- I. B. Spielman, W. D. Phillips, and J. V. Porto, Mott-insulator transition in a two-dimensional atomic bose gas, Phys. Rev. Lett. 98, 080404 (2007).
- I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).
- A. Browaeys and T. Lahaye, Many-body physics with individually controlled Rydberg atoms, Nat. Phys. 16, 132 (2020).
- U.-J. Wiese, Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories, Ann. Phys. 525, 777 (2013).
- R. Verresen, M. D. Lukin, and A. Vishwanath, Prediction of toric code topological order from Rydberg blockade, Phys. Rev. X 11, 031005 (2021c).
- S. V. Isakov, M. B. Hastings, and R. G. Melko, Topological entanglement entropy of a Bose–Hubbard spin liquid, Nat. Phys. 7, 772 (2011).
- Y. Kuno and I. Ichinose, Production of lattice gauge Higgs topological states in a measurement-only quantum circuit, Phys. Rev. B 107, 224305 (2023).
- A.-R. Negari, S. Sahu, and T. H. Hsieh, Measurement-induced phase transitions in the toric code, arXiv:2307.02292 (2023), 2307.02292 .
- Y. Kuno, T. Orito, and I. Ichinose, Bulk-measurement-induced boundary phase transition in toric code and gauge-Higgs model, arXiv:2311.16651 (2023), 2311.16651 .
- S. Gazit, M. Randeria, and A. Vishwanath, Emergent Dirac fermions and broken symmetries in confined and deconfined phases of Z2subscript𝑍2{Z}_{2}italic_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT gauge theories, Nat. Phys. 13, 484 (2017).
- G. Ortiz, E. Cobanera, and Z. Nussinov, Dualities and the phase diagram of the p𝑝pitalic_p-clock model, Nucl. Phys. B. 854, 780 (2012).
- B. Yoshida, Topological phases with generalized global symmetries, Phys. Rev. B 93, 155131 (2016).
- C. Vafa, Modular invariance and discrete torsion on orbifolds, Nucl. Phys. B 273, 592 (1986).