Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamical invariant based shortcut to equilibration in open quantum systems (2401.11659v3)

Published 22 Jan 2024 in quant-ph and cond-mat.stat-mech

Abstract: We propose using the dynamical invariant also known as the Lewis-Riesenfeld invariant, to speed-up the equilibration of a driven open quantum system. This allows us to reverse engineer the time-dependent master equation that describes the dynamics of the open quantum system and systematically derive a protocol that realizes a shortcut to equilibration. The method does not require additional constraints on the timescale of the dynamics beside the Born-Markov approximation and can be generically applied to boost single particle quantum engines significantly. We demonstrate it with the damped harmonic oscillator, and show that our protocol can achieve a high-fidelity control in shorter timescales than simple non-optimized protocols. We find that the system is heated during the dynamics to speed-up the equilibration, which can be considered as an analogue of the Mpemba effect in quantum control.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. S. Kallush, R. Dann, and R. Kosloff, Controlling the uncontrollable: Quantum control of open-system dynamics, Science Advances 8, eadd0828 (2022), https://www.science.org/doi/pdf/10.1126/sciadv.add0828 .
  2. R. Kosloff and A. Levy, Quantum Heat Engines and Refrigerators: Continuous Devices, Annual Review of Physical Chemistry 65, 365 (2014).
  3. S. Vinjanampathy and J. Anders, Quantum thermodynamics, Contemporary Physics 57, 545 (2016).
  4. N. M. Myers, O. Abah, and S. Deffner, Quantum thermodynamic devices: From theoretical proposals to experimental reality, AVS Quantum Science 4, 027101 (2022), https://pubs.aip.org/avs/aqs/article-pdf/doi/10.1116/5.0083192/16494008/027101_1_online.pdf .
  5. G. Kurizki and A. G. Kofman, Thermodynamics and Control of Open Quantum Systems (Cambridge University Press, 2022).
  6. R. Xu, Reinforcement learning approach to shortcuts between thermodynamic states with minimum entropy production, Phys. Rev. E 105, 054123 (2022).
  7. T. Villazon, A. Polkovnikov, and A. Chandran, Swift heat transfer by fast-forward driving in open quantum systems, Phys. Rev. A 100, 012126 (2019).
  8. R. Dann, A. Tobalina, and R. Kosloff, Shortcut to equilibration of an open quantum system, Phys. Rev. Lett. 122, 250402 (2019).
  9. R. Dann, A. Tobalina, and R. Kosloff, Fast route to equilibration, Phys. Rev. A 101, 052102 (2020).
  10. R. Dann and R. Kosloff, Quantum signatures in the quantum Carnot cycle, New J. Phys. 22, 013055 (2020).
  11. A. Das and V. Mukherjee, Quantum-enhanced finite-time Otto cycle, Phys. Rev. Research 2, 033083 (2020).
  12. H.-P. Breuer and F. Petruccione, The theory of Open Quantum Systems (Oxford University Press, 2002).
  13. R. Dann, A. Levy, and R. Kosloff, Time-dependent markovian quantum master equation, Phys. Rev. A 98, 052129 (2018).
  14. R. Dann and R. Kosloff, Inertial theorem: Overcoming the quantum adiabatic limit, Phys. Rev. Res. 3, 013064 (2021).
  15. H. R. Lewis and W. B. Riesenfeld, An exact quantum theory of the time‐dependent harmonic oscillator and of a charged particle in a time‐dependent electromagnetic field, J. Math. Phys. 10, 1458 (1969), https://doi.org/10.1063/1.1664991 .
  16. S. L. Wu, X. L. Huang, and X. X. Yi, Driven Markovian master equation based on the Lewis-Riesenfeld-invariant theory, Phys. Rev. A 106, 052217 (2022).
  17. V. Blickle and C. Bechinger, Realization of a micrometre-sized stochastic heat engine, Nature Physics 8, 143 (2012).
  18. R. Kosloff and Y. Rezek, The Quantum Harmonic Otto Cycle, Entropy 19, 136 (2017).
  19. A. Lampo, M. A. García March, and M. Lewenstein, eds., Quantum Brownian Motion Revisited (Springer Cham, 2019).
  20. T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113, 140401 (2014).
  21. E. B. Mpemba and D. G. Osborne, Cool?, Physics Education 4, 172 (1969).
  22. A. K. Chatterjee, S. Takada, and H. Hayakawa, Quantum Mpemba effect in a quantum dot with reservoirs, Phys. Rev. Lett. 131, 080402 (2023).
  23. P. Salamon and R. S. Berry, Thermodynamic length and dissipated availability, Phys. Rev. Lett. 51, 1127 (1983).
  24. M. Scandi and M. Perarnau-Llobet, Thermodynamic length in open quantum systems, Quantum 3, 197 (2019).
  25. W. Ma, X. L. Huang, and S. L. Wu, Dynamics of a driven open double two-level system and its entanglement generation, Phys. Rev. A 107, 032409 (2023).
  26. M. Girardeau, Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension, J. Math. Phys. 1, 516 (1960).
  27. J. Jaramillo, M. Beau, and A. del Campo, Quantum supremacy of many-particle thermal machines, New J. Phys. 18, 075019 (2016).
  28. T. Fogarty and T. Busch, A many-body heat engine at criticality, Quantum Science and Technology 6, 015003 (2020).
  29. M. Boubakour, T. Fogarty, and T. Busch, Interaction-enhanced quantum heat engine, Phys. Rev. Res. 5, 013088 (2023).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com