Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CaBuAr: California Burned Areas dataset for delineation (2401.11519v1)

Published 21 Jan 2024 in cs.CV, cs.LG, and eess.IV

Abstract: Forest wildfires represent one of the catastrophic events that, over the last decades, caused huge environmental and humanitarian damages. In addition to a significant amount of carbon dioxide emission, they are a source of risk to society in both short-term (e.g., temporary city evacuation due to fire) and long-term (e.g., higher risks of landslides) cases. Consequently, the availability of tools to support local authorities in automatically identifying burned areas plays an important role in the continuous monitoring requirement to alleviate the aftereffects of such catastrophic events. The great availability of satellite acquisitions coupled with computer vision techniques represents an important step in developing such tools. This paper introduces a novel open dataset that tackles the burned area delineation problem, a binary segmentation problem applied to satellite imagery. The presented resource consists of pre- and post-fire Sentinel-2 L2A acquisitions of California forest fires that took place starting in 2015. Raster annotations were generated from the data released by California's Department of Forestry and Fire Protection. Moreover, in conjunction with the dataset, we release three different baselines based on spectral indexes analyses, SegFormer, and U-Net models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Z. Dong, G. Wang, S. O. Y. Amankwah, X. Wei, Y. Hu, and A. Feng, “Monitoring the summer flooding in the Poyang Lake area of China in 2020 based on Sentinel-1 data and multiple convolutional neural networks,” International Journal of Applied Earth Observation and Geoinformation, vol. 102, p. 102400, 2021.
  2. A. Asokan and J. Anitha, “Change detection techniques for remote sensing applications: a survey,” Earth Science Informatics, vol. 12, no. 2, pp. 143–160, 2019.
  3. J. Sublime and E. Kalinicheva, “Automatic post-disaster damage mapping using deep-learning techniques for change detection: Case study of the Tohoku tsunami,” Remote Sensing, vol. 11, no. 9, p. 1123, 2019.
  4. R. Lasaponara and B. Tucci, “Identification of burned areas and severity using SAR Sentinel-1,” IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 6, pp. 917–921, 2019.
  5. D. R. Cambrin, L. Colomba, and P. Garza, “Vision transformers for burned area delineation,” in Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 2022.
  6. M. A. Tanase, M. A. Belenguer-Plomer, E. Roteta, A. Bastarrika, J. Wheeler, Á. Fernández-Carrillo, K. Tansey, W. Wiedemann, P. Navratil, S. Lohberger et al., “Burned area detection and mapping: Intercomparison of Sentinel-1 and Sentinel-2 based algorithms over tropical Africa,” Remote Sensing, vol. 12, no. 2, p. 334, 2020.
  7. Sentinel-2 mission guide. https://sentinel.esa.int/web/sentinel/missions/sentinel-2. Accessed on: 2023/04/14.
  8. California department of forestry and fire protection. https://www.fire.ca.gov/. Accessed on: 2023/04/14.
  9. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.
  10. E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, “SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers,” in Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34.   Curran Associates, Inc., 2021, pp. 12 077–12 090.
  11. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in Lecture Notes in Computer Science.   Springer International Publishing, 2015, pp. 234–241.
  12. D. Bonafilia, B. Tellman, T. Anderson, and E. Issenberg, “Sen1floods11: A georeferenced dataset to train and test deep learning flood algorithms for sentinel-1,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020.
  13. R. A. Frey, S. A. Ackerman, R. E. Holz, S. Dutcher, and Z. Griffith, “The continuity modis-viirs cloud mask,” Remote Sensing, vol. 12, no. 20, 2020.
  14. F. Filipponi, “Bais2: Burned area index for sentinel-2,” Proceedings, vol. 2, no. 7, 2018.
  15. A. Fisher, N. Flood, and T. Danaher, “Comparing landsat water index methods for automated water classification in eastern australia,” Remote Sensing of Environment, vol. 175, pp. 167–182, 2016.
  16. N. Pettorelli, J. O. Vik, A. Mysterud, J.-M. Gaillard, C. J. Tucker, and N. C. Stenseth, “Using the satellite-derived ndvi to assess ecological responses to environmental change,” Trends in Ecology & Evolution, vol. 20, no. 9, pp. 503–510, 2005.
  17. L. Saulino, A. Rita, A. Migliozzi, C. Maffei, E. Allevato, A. P. Garonna, and A. Saracino, “Detecting burn severity across mediterranean forest types by coupling medium-spatial resolution satellite imagery and field data,” Remote Sensing, vol. 12, no. 4, 2020.
  18. W. Bin, L. Ming, J. Dan, L. Suju, C. Qiang, W. Chao, Z. Yang, Y. Huan, and Z. Jun, “A method of automatically extracting forest fire burned areas using gf-1 remote sensing images,” in IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 2019, pp. 9953–9955.
  19. C. A. Cansler and D. McKenzie, “How robust are burn severity indices when applied in a new region? Evaluation of alternate field-based and remote-sensing methods,” Remote sensing, vol. 4, no. 2, pp. 456–483, 2012.
  20. L. Knopp, M. Wieland, M. Rättich, and S. Martinis, “A deep learning approach for burned area segmentation with Sentinel-2 data,” Remote Sensing, vol. 12, no. 15, p. 2422, 2020.
  21. A. Farasin, L. Colomba, G. Palomba, G. Nini, and C. Rossi, “Supervised Burned Areas delineation by means of Sentinel-2 imagery and Convolutional Neural Networks,” in ISCRAM 2020, Virginia Tech, Blacksburg, VA, USA, 2020, pp. 24–27.
  22. Q. Safder, H. Zhang, and Z. Zheng, “Burnt area segmentation with densely layered capsules,” in IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 2022, pp. 2199–2202.
  23. D. Sykas, M. Sdraka, D. Zografakis, and I. Papoutsis, “A sentinel-2 multi-year, multi-country benchmark dataset for crop classification and segmentation with deep learning,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022.
  24. L. Colomba, A. Farasin, S. Monaco, S. Greco, P. Garza, D. Apiletti, E. Baralis, and T. Cerquitelli, “A dataset for burned area delineation and severity estimation from satellite imagery,” in CIKM2022, ser. CIKM ’22.   ACM, 2022, p. 3893–3897.
  25. Y. Prabowo, A. D. Sakti, K. A. Pradono, Q. Amriyah, F. H. Rasyidy, I. Bengkulah, K. Ulfa, D. S. Candra, M. T. Imdad, and S. Ali, “Deep learning dataset for estimating burned areas: Case study, indonesia,” Data, vol. 7, no. 6, 2022.
  26. C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. Jorge Cardoso, “Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations,” in Deep learning in medical image analysis and multimodal learning for clinical decision support.   Springer International Publishing, 2017, pp. 240–248.
Citations (6)

Summary

We haven't generated a summary for this paper yet.