Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy Consumption Analysis for Continuous Phase Modulation in Smart-Grid Internet of Things of beyond 5G (2401.11449v1)

Published 21 Jan 2024 in eess.SP and cs.NI

Abstract: Wireless sensor network (WSN) underpinning the smart-grid Internet of Things (SG-IoT) has been a popular research topic in recent years due to its great potential for enabling a wide range of important applications. However, the energy consumption (EC) characteristic of sensor nodes is a key factor that affects the operational performance (e.g., lifetime of sensors) and the total cost of ownership of WSNs. In this paper, to find the modulation techniques suitable for WSNs, we investigate the EC characteristic of continuous phase modulation (CPM), which is an attractive modulation scheme candidate for WSNs because of its constant envelope property. We first develop an EC model for the sensor nodes of WSNs by considering the circuits and a typical communication protocol that relies on automatic repeat request (ARQ)-based retransmissions to ensure successful data delivery. Then, we use this model to analyze the EC characteristic of CPM under various configurations of modulation parameters. Furthermore, we compare the EC characteristic of CPM with that of other representative modulation schemes, such as offset quadrature phase-shift keying (OQPSK) and quadrature amplitude modulation (QAM), which are commonly used in communication protocols of WSNs. Our analysis and simulation results provide insights into the EC characteristics of multiple modulation schemes in the context of WSNs; thus, they are beneficial for designing energy-efficient SG-IoT in the beyond-5G (B5G) and the 6G era.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Z. Fei, B. Li, S. Yang, C. Xing, H. Chen, and L. Hanzo, “A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms, and open problems,” IEEE Communications Surveys & Tutorials, vol. 19, no. 1, pp. 550–586, First Quarter 2017.
  2. H. Cao, J. Du, H. Zhao, D. X. Luo, N. Kumar, L. Yang, and F. R. Yu, “Toward tailored resource allocation of slices in 6G networks with softwarization and virtualization,” IEEE Internet of Things Journal, vol. 9, no. 9, pp. 6623–6637, May 2022.
  3. K. T. K. Cheung, S. Yang, and L. Hanzo, “Achieving maximum energy-efficiency in multi-relay OFDMA cellular networks: A fractional programming approach,” IEEE Transactions on Communications, vol. 61, no. 7, pp. 2746–2757, Jul. 2013.
  4. ——, “Maximizing energy-efficiency in multi-relay OFDMA cellular networks,” in Proc. IEEE Global Communications Conference (GLOBECOM’13), Atlanta, USA, Dec. 2013, pp. 2767–2772.
  5. ——, “Spectral and energy spectral efficiency optimization of joint transmit and receive beamforming based multi-relay MIMO-OFDMA cellular networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 11, pp. 6147–6165, Nov. 2014.
  6. W. Jing, Z. Lu, X. Wen, Z. Hu, and S. Yang, “Flexible resource allocation for joint optimization of energy and spectral efficiency in OFDMA multi-cell networks,” IEEE Communications Letters, vol. 19, no. 3, pp. 451–454, Mar. 2015.
  7. K. T. K. Cheung, S. Yang, and L. Hanzo, “Distributed energy spectral efficiency optimization for partial/full interference alignment in multi-user multi-relay multi-cell MIMO systems,” IEEE Transactions on Signal Processing, vol. 64, no. 4, pp. 882–896, Feb. 2016.
  8. F. Tan, T. Lv, and S. Yang, “Power allocation optimization for energy-efficient massive MIMO aided multi-pair decode-and-forward relay systems,” IEEE Transactions on Communications, vol. 65, no. 6, pp. 2368–2381, Jun. 2017.
  9. X. Miao, S. Yang, C. Wang, S. Wang, and L. Hanzo, “On the energy efficiency of interference alignment in the K𝐾Kitalic_K-user interference channel,” IEEE Access, vol. 7, pp. 97 253–97 263, Aug. 2019.
  10. T. Abrão, L. D. H. Sampaio, S. Yang, K. T. K. Cheung, P. J. E. Jeszensky, and L. Hanzo, “Energy efficient OFDMA networks maintaining statistical QoS guarantees for delay-sensitive traffic,” IEEE Access, vol. 4, pp. 774–791, Mar. 2016.
  11. L. Zhao, S. Yang, X. Chi, W. Chen, and S. Ma, “Achieving energy-efficient uplink URLLC with MIMO-aided grant-free access,” IEEE Transactions on Wireless Communications, vol. 21, no. 2, pp. 1407–1420, Feb. 2022.
  12. Z. Lin, M. Lin, B. Champagne, W.-P. Zhu, and N. Al-Dhahir, “Secrecy-energy efficient hybrid beamforming for satellite-terrestrial integrated networks,” IEEE Transactions on Communications, vol. 69, no. 9, pp. 6345–6360, Sep. 2021.
  13. Z. Lin, K. An, H. Niu, Y. Hu, S. Chatzinotas, G. Zheng, and J. Wang, “SLNR-based secure energy efficient beamforming in multibeam satellite systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. 59, no. 2, pp. 2085–2088, Apr. 2023.
  14. S. Cui, A. J. Goldsmith, and A. Bahai, “Energy-constrained modulation optimization,” IEEE Transactions on Wireless Communications, vol. 4, no. 5, pp. 2349–2360, Sep. 2005.
  15. F. Rosas and C. Oberli, “Modulation optimization for achieving energy efficient communications over fading channels,” in Proc. IEEE 75th Vehicular Technology Conference (VTC Spring’12), Yokohama, Japan, May 2012, pp. 1–5.
  16. T. Wang, W. Heinzelman, and A. Seyedi, “Minimization of transceiver energy consumption in wireless sensor networks with AWGN channels,” in Proc. 46th Annual Allerton Conference on Communication, Control, and Computing (Allerton’08), Monticello, USA, Sep. 2008, pp. 62–66.
  17. M. Abo-Zahhad, M. Farrag, and A. Ali, “Modeling and minimization of energy consumption in wireless sensor networks,” in Proc. IEEE International Conference on Electronics, Circuits, and Systems (ICECS’15), Cairo, Egypt, Dec. 2015, pp. 697–700.
  18. F. Rosas and C. Oberli, “Modulation and SNR optimization for achieving energy-efficient communications over short-range fading channels,” IEEE Transactions on Wireless Communications, vol. 11, no. 12, pp. 4286–4295, Dec. 2012.
  19. T. Aulin and C. Sundberg, “Continuous phase modulation – Part I: Full response signaling,” IEEE Transactions on Communications, vol. 29, no. 3, pp. 196–209, Mar. 1981.
  20. O. Amin, S. Bavarian, and L. Lampe, “Cooperative techniques for energy-efficient wireless communications,” in Green Radio Communication Networks, E. Hossain, V. K. Bhargava, and G. P. Fettweis, Eds.   Cambridge, UK: Cambridge University Press, 2012, ch. 6, pp. 125–149.
  21. Q. Wang, M. Hempstead, and W. Yang, “A realistic power consumption model for wireless sensor network devices,” in Proc. 3rd Annual IEEE Communications Society on Sensor, Mesh and Ad Hoc Communications and Networks (SECON’06), Reston, USA, Sep. 2006, pp. 286–295.
  22. S. Zhang, S. Xu, G. Y. Li, and E. Ayanoglu, “First 20 years of green radios,” IEEE Transactions on Green Communications and Networking, vol. 4, no. 1, pp. 1–15, Mar. 2020.
  23. T. Aulin, N. Rydbeck, and C.-E. Sundberg, “Continuous phase modulation – Part II: Partial response signaling,” IEEE Transactions on Communications, vol. 29, no. 3, pp. 210–225, Mar. 1981.
  24. K. Kassan, H. Farès, D. C. Glattli, and Y. Louët, “Performance vs. spectral properties for single-sideband continuous phase modulation,” IEEE Transactions on Communications, vol. 69, no. 7, pp. 4402–4416, Jul. 2021.
  25. M. Foruhandeh, M. Uysal, I. Altunbas, T. Guven, and A. Gercek, “Optimal choice of transmission parameters for LDPC-coded CPM,” in Proc. IEEE Military Communications Conference (MILCOM’14), Baltimore, USA, Oct. 2014, pp. 368–371.
Citations (1)

Summary

We haven't generated a summary for this paper yet.