Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SEBERTNets: Sequence Enhanced BERT Networks for Event Entity Extraction Tasks Oriented to the Finance Field (2401.11408v1)

Published 21 Jan 2024 in cs.CL and cs.AI

Abstract: Event extraction lies at the cores of investment analysis and asset management in the financial field, and thus has received much attention. The 2019 China conference on knowledge graph and semantic computing (CCKS) challenge sets up a evaluation competition for event entity extraction task oriented to the finance field. In this task, we mainly focus on how to extract the event entity accurately, and recall all the corresponding event entity effectively. In this paper, we propose a novel model, Sequence Enhanced BERT Networks (SEBERTNets for short), which can inherit the advantages of the BERT,and while capturing sequence semantic information. In addition, motivated by recommendation system, we propose Hybrid Sequence Enhanced BERT Networks (HSEBERTNets for short), which uses a multi-channel recall method to recall all the corresponding event entity. The experimental results show that, the F1 score of SEBERTNets is 0.905 in the first stage, and the F1 score of HSEBERTNets is 0.934 in the first stage, which demonstarate the effectiveness of our methods.

Summary

We haven't generated a summary for this paper yet.