Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharing Energy in Wide Area: A Two-Layer Energy Sharing Scheme for Massive Prosumers (2401.11090v1)

Published 20 Jan 2024 in cs.GT, cs.SY, eess.SY, and math.OC

Abstract: The popularization of distributed energy resources transforms end-users from consumers into prosumers. Inspired by the sharing economy principle, energy sharing markets for prosumers are proposed to facilitate the utilization of renewable energy. This paper proposes a novel two-layer energy sharing market for massive prosumers, which can promote social efficiency by wider-area sharing. In this market, there is an upper-level wide-area market (WAM) in the distribution system and numerous lower-level local-area markets (LAMs) in communities. Prosumers in the same community share energy with each other in the LAM, which can be uncleared. The energy surplus and shortage of LAMs are cleared in the WAM. Thanks to the wide-area two-layer structure, the market outcome is near-social-optimal in large-scale systems. However, the proposed market forms a complex mathematical program with equilibrium constraints (MPEC). To solve the problem, we propose an efficient and hierarchically distributed bidding algorithm. The proposed two-layer market and bidding algorithm are verified on the IEEE 123-bus system with 11250 prosumers, which demonstrates the practicality and efficiency for large-scale markets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Y. Chen and C. Zhao, “Review of energy sharing: Business models, mechanisms, and prospects,” IET Renewable Power Generation, vol. 16, no. 12, pp. 2468–2480, 2022.
  2. Y. Su, S. Wu, Z. Wang, Z. Bao, and F. Liu, “Hierarchically distributed energy management in distribution systems: An error-tolerant and asynchronous approach,” IEEE Transactions on Smart Grid, 2023.
  3. Y. Su, F. Liu, Z. Wang, Y. Zhang, B. Li, and Y. Chen, “Multi-stage robust dispatch considering demand response under decision-dependent uncertainty,” IEEE Transactions on Smart Grid, 2022.
  4. Z. Wang, L. Chen, F. Liu, P. Yi, M. Cao, S. Deng, and S. Mei, “Asynchronous distributed power control of multimicrogrid systems,” IEEE Transactions on Control of Network Systems, vol. 7, no. 4, pp. 1960–1973, 2020.
  5. N. Liu, X. Yu, C. Wang, and J. Wang, “Energy sharing management for microgrids with pv prosumers: A stackelberg game approach,” IEEE Transactions on Industrial Informatics, vol. 13, no. 3, pp. 1088–1098, 2017.
  6. B. Li, Q. Yang, L. Duan, and Y. Sun, “Operator-as-a-consumer: A novel energy storage sharing approach under demand charge,” IEEE Transactions on Cybernetics, 2021.
  7. A. Fleischhacker, H. Auer, G. Lettner, and A. Botterud, “Sharing solar pv and energy storage in apartment buildings: Resource allocation and pricing,” IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 3963–3973, 2018.
  8. Y. Wang, W. Saad, Z. Han, H. V. Poor, and T. Başar, “A game-theoretic approach to energy trading in the smart grid,” IEEE Transactions on Smart Grid, vol. 5, no. 3, pp. 1439–1450, 2014.
  9. T. Morstyn, A. Teytelboym, and M. D. McCulloch, “Bilateral contract networks for peer-to-peer energy trading,” IEEE Transactions on Smart Grid, vol. 10, no. 2, pp. 2026–2035, 2018.
  10. L. He and J. Zhang, “A community sharing market with pv and energy storage: An adaptive bidding-based double-side auction mechanism,” IEEE Transactions on Smart Grid, vol. 12, no. 3, pp. 2450–2461, 2020.
  11. T. Tanaka, N. Li, and K. Uchida, “On the relationship between the vcg mechanism and market clearing,” in 2018 Annual American Control Conference (ACC).   IEEE, 2018, pp. 4597–4603.
  12. Y. Chen, S. Mei, F. Zhou, S. H. Low, W. Wei, and F. Liu, “An energy sharing game with generalized demand bidding: Model and properties,” IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2055–2066, 2019.
  13. H. Le Cadre, P. Jacquot, C. Wan, and C. Alasseur, “Peer-to-peer electricity market analysis: From variational to generalized nash equilibrium,” European Journal of Operational Research, vol. 282, no. 2, pp. 753–771, 2020.
  14. Z. Wang, F. Liu, Z. Ma, Y. Chen, M. Jia, W. Wei, and Q. Wu, “Distributed generalized nash equilibrium seeking for energy sharing games in prosumers,” IEEE Transactions on Power Systems, vol. 36, no. 5, pp. 3973–3986, 2021.
  15. Y. Chen, C. Zhao, S. H. Low, and A. Wierman, “An energy sharing mechanism considering network constraints and market power limitation,” IEEE Transactions on Smart Grid, vol. 14, no. 2, pp. 1027–1041, 2022.
  16. J. Guerrero, A. C. Chapman, and G. Verbič, “Decentralized p2p energy trading under network constraints in a low-voltage network,” IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 5163–5173, 2018.
  17. N. Liu, J. Wang, X. Yu, and L. Ma, “Hybrid energy sharing for smart building cluster with chp system and pv prosumers: A coalitional game approach,” IEEE Access, vol. 6, pp. 34 098–34 108, 2018.
  18. L. Han, T. Morstyn, and M. McCulloch, “Estimation of the shapley value of a peer-to-peer energy sharing game using multi-step coalitional stratified sampling,” International Journal of Control, Automation and Systems, vol. 19, pp. 1863–1872, 2021.
  19. J. Mei, C. Chen, J. Wang, and J. L. Kirtley, “Coalitional game theory based local power exchange algorithm for networked microgrids,” Applied energy, vol. 239, pp. 133–141, 2019.
  20. L. Han, T. Morstyn, C. Crozier, and M. McCulloch, “Improving the scalability of a prosumer cooperative game with k-means clustering,” in 2019 IEEE Milan PowerTech.   IEEE, 2019, pp. 1–6.
  21. G. El Rahi, S. R. Etesami, W. Saad, N. B. Mandayam, and H. V. Poor, “Managing price uncertainty in prosumer-centric energy trading: A prospect-theoretic stackelberg game approach,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 702–713, 2017.
  22. B. Zheng, W. Wei, Y. Chen, Q. Wu, and S. Mei, “A peer-to-peer energy trading market embedded with residential shared energy storage units,” Applied Energy, vol. 308, p. 118400, 2022.
  23. H. Wang and J. Huang, “Incentivizing energy trading for interconnected microgrids,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2647–2657, 2016.
  24. J. Wang, H. Zhong, Y. Yu, J. Wang, E. Du, and Q. Xia, “Incentive mechanism for cooperative energy sharing,” in 2018 IEEE Power & Energy Society General Meeting (PESGM).   IEEE, 2018, pp. 1–5.
  25. Y. Liu and F. F. Wu, “Impacts of network constraints on electricity market equilibrium,” IEEE Transactions on Power Systems, vol. 22, no. 1, pp. 126–135, 2007.
  26. L. Bai, J. Wang, C. Wang, C. Chen, and F. Li, “Distribution locational marginal pricing (dlmp) for congestion management and voltage support,” IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 4061–4073, 2017.
  27. D. P. Palomar and M. Chiang, “A tutorial on decomposition methods for network utility maximization,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 8, pp. 1439–1451, 2006.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Yifan Su (26 papers)
  2. Peng Yang (136 papers)
  3. Kai Kang (25 papers)
  4. Zhaojian Wang (36 papers)
  5. Ning Qi (16 papers)
  6. Tonghua Liu (57 papers)
  7. Feng Liu (1212 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets