A Molev-Sagan type formula for double Schubert polynomials (2401.11060v1)
Abstract: We give a Molev-Sagan type formula for computing the product $\mathfrak{S}u(x;y)\mathfrak{S}_v(x;z)$ of two double Schubert polynomials in different sets of coefficient variables where the descents of $u$ and $v$ satisfy certain conditions that encompass Molev and Sagan's original case and conjecture positivity in the general case. Additionally, we provide a Pieri formula for multiplying an arbitrary double Schubert polynomial $\mathfrak{S}_u(x;y)$ by a factorial elementary symmetric polynomial $E{p,k}(x;z)$. Both formulas remain positive in terms of the negative roots when we set $y=z$, so in particular this gives a new equivariant Littlewood-Richardson rule for the Grassmannian, and more generally a positive formula for multiplying a factorial Schur polynomial $s_{\lambda}(x_1,\ldots,x_m;y)$ by a double Schubert polynomial $\mathfrak{S}_v(x_1,\ldots,x_p;y)$ such that $m\geq p$. An additional new result we present is a combinatorial proof of a conjecture of Kirillov of nonnegativity of the coefficients of skew Schubert polynomials, and we conjecture a weight-preserving bijection between a modification of certain diagrams used in our formulas and RC-graphs/pipe dreams arising in formulas for double Schubert polynomials.
- RC-graphs and Schubert polynomials. Experimental Math. 2, 4 (1993), 257–269.
- Skew Schubert functions and the Pieri formula for flag manifolds. Trans. Amer. Math. Soc. 354, 2 (2001), 651–673.
- Schubert cells and the cohomology of the spaces G/P. Russian Math. Surveys 28 (1973), 1–26.
- Combinatorics of Coxeter Groups. Springer, 2005.
- Buch, A. S. Mutations of puzzles and equivariant cohomology of two-step flag varieties. Ann. of Math. (2015), 173–220.
- Factorial Schur functions and the Yang-Baxter equation. arXiv preprint arXiv:1108.3087 (2011).
- The skew Schubert polynomials. European J. Combin. 25, 8 (2004), 1181–1196.
- Bumpless pipe dreams meet Puzzles. arXiv preprint arXiv:2309.00467 (2023).
- Graham, W. Positivity in equivariant Schubert calculus. Duke Math. J. 109, 3 (2001), 599–614.
- (https://mathoverflow.net/users/62135/matt samuel), M. S. Product of a Schubert polynomial and a double Schubert polynomial. MathOverflow. URL:https://mathoverflow.net/q/212762 (version: 2016-09-06).
- Huang, D. Schubert products for permutations with separated descents. International Mathematics Research Notices (November 2022).
- Kirillov, A. N. Skew divided difference operators and Schubert polynomials. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications 3 (2007), 072.
- Knutson, A. Schubert polynomials, pipe dreams, equivariant classes, and a co-transition formula. arXiv.org:1909.13777 (2019).
- Puzzles and (equivariant) cohomology of Grassmannians. Duke Math. J. 119, 2 (2003), 221–260.
- Schubert calculus and quiver varieties. https://pi.math.cornell.edu/allenk/boston2019.pdf, 2019. Accessed 2023-06-10.
- Schubert puzzles and integrability III: separated descents. arXiv preprint arXiv:2306.13855 (2023).
- Kohnert, A. Multiplication of a Schubert polynomial by a Schur polynomial. Ann. Comb. 1, 1 (1997), 367–375.
- The nil Hecke ring and cohomology of G/P for a Kac-Moody group G. Proceedings of the National Academy of Sciences 83, 6 (1986), 1543–1545.
- Polynômes de Schubert. Comptes Rendus de l’Académie des Sciences, Série I 294, 13 (1982), 447–450.
- Skew Schubert polynomials. Proc. Amer. Math. Soc. 131, 11 (2003), 3319–3328.
- Macdonald, I. G. Notes on Schubert Polynomials. Université Du Québec à Montréal, Dép. de mathématiques et d’informatique, 1991.
- Molev, A. Littlewood–Richardson polynomials. Journal of Algebra 321, 11 (2009), 3450–3468.
- A Littlewood-Richardson rule for factorial Schur functions. Trans. Amer. Math. Soc. 351, 11 (1999), 4429–4443.
- A Littlewood-Richardson rule for Grassmannian permutations. Proc. Am. Math. Soc. 137 (2009), 1875–1882.
- Robinson, S. A Pieri-Type Formula for H*T(SLn(C)/B)superscript𝐻𝑇𝑆subscript𝐿𝑛𝐶𝐵H^{*}T(SL_{n}(C)/B)italic_H start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_T ( italic_S italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_C ) / italic_B ). J. Algebra 249, 1 (2002), 38–58.
- Samuel, M. J. The Leibniz formula for divided difference operators associated to Kac-Moody root systems. PhD thesis, Rutgers, The State University of New Jersey, 2014.
- Sottile, F. Pieri’s rule for flag manifolds and Schubert polynomials. Ann. Inst. Fourier 46, 1 (1996), 89–110.
- Tamvakis, H. Tableau formulas for skew Schubert polynomials. arXiv preprint arXiv:2008.07034 (2020).