Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new look to branching Brownian motion from a particle based reaction diffusion dynamics point of view (2401.11045v1)

Published 19 Jan 2024 in math.PR

Abstract: Aim of this note is to analyse branching Brownian motion within the class of models introduced in the paper [4] and called chemical diffusion master equations. These models provide a description for the probabilistic evolution of chemical reaction kinetics associated with spatial diffusion of individual particles. We derive an infinite system of Fokker-Planck equations that rules the probabilistic evolution of the single particles generated by the branching mechanism and analyse its properties using Malliavin Calculus techniques, following the ideas proposed in [13]. Another key ingredient of our approach is the McKean representation for the solution of the Fisher-Kolmogorov-Petrovskii-Piskunov equation and a stochastic counterpart of that equation. We also derive the reaction-diffusion partial differential equation solved by the average concentration field of the branching Brownian system of particles.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. S. R. Adke. The generalized birth and death process and Gaussian diffusion. J. Math. Anal. Appl., 9:336–340, 1964.
  2. A birth, death, and diffusion process. J. Math. Anal. Appl., 7:209–224, 1963.
  3. Anton Bovier. From spin glasses to branching Brownian motion - and back?, volume 2144. 08 2015.
  4. A probabilistic framework for particle-based reaction-diffusion dynamics using classical Fock space representations. Lett. Math. Phys., 112(3):Paper No. 49, 59, 2022.
  5. Chemical diffusion master equation: Formulations of reaction–diffusion processes on the molecular level. J. Math. Phys., 64(1):013304, 2023.
  6. Masao Doi. Second quantization representation for classical many-particle system. Journal of Physics A: Mathematical and General, 9(9):1465, 1976.
  7. R. A. Fisher. The wave of advance of advantageous genes. Annals of Eugenics, 7(4):355–369, 1937.
  8. Stochastic partial differential equations. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1996. A modeling, white noise functional approach.
  9. Yaozhong Hu. Analysis on Gaussian spaces. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.
  10. Svante Janson. Gaussian Hilbert spaces, volume 129 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1997.
  11. Etude de l’ équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Math., 1:1–25, 1937.
  12. Hui-Hsiung Kuo. White noise distribution theory. Probability and Stochastics Series. CRC Press, Boca Raton, FL, 1996.
  13. Alberto Lanconelli. Using malliavin calculus to solve a chemical diffusion master equation. Journal of Mathematical Analysis and Applications, 526(2):127352, 2023.
  14. Probabilistic derivation and analysis of the chemical diffusion master equation with mutual annihilation. arXiv2306.05139, 2023.
  15. Solution formula for the general birth-death chemical diffusion master equation. arXiv2302.10700, 2023.
  16. Stochastic evolution equations with Wick-polynomial nonlinearities. Electronic Journal of Probability, 23:1 – 25, 2018.
  17. H. P. McKean. Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Comm. Pure Appl. Math., 28(3):323–331, 1975.
  18. David Nualart. The Malliavin calculus and related topics. Probability and its Applications (New York). Springer-Verlag, Berlin, second edition, 2006.

Summary

We haven't generated a summary for this paper yet.