Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis and Detection of Multilingual Hate Speech Using Transformer Based Deep Learning (2401.11021v1)

Published 19 Jan 2024 in cs.CL, cs.AI, and cs.IR

Abstract: Hate speech is harmful content that directly attacks or promotes hatred against members of groups or individuals based on actual or perceived aspects of identity, such as racism, religion, or sexual orientation. This can affect social life on social media platforms as hateful content shared through social media can harm both individuals and communities. As the prevalence of hate speech increases online, the demand for automated detection as an NLP task is increasing. In this work, the proposed method is using transformer-based model to detect hate speech in social media, like twitter, Facebook, WhatsApp, Instagram, etc. The proposed model is independent of languages and has been tested on Italian, English, German, Bengali. The Gold standard datasets were collected from renowned researcher Zeerak Talat, Sara Tonelli, Melanie Siegel, and Rezaul Karim. The success rate of the proposed model for hate speech detection is higher than the existing baseline and state-of-the-art models with accuracy in Bengali dataset is 89%, in English: 91%, in German dataset 91% and in Italian dataset it is 77%. The proposed algorithm shows substantial improvement to the benchmark method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Arijit Das (17 papers)
  2. Somashree Nandy (1 paper)
  3. Rupam Saha (4 papers)
  4. Srijan Das (35 papers)
  5. Diganta Saha (16 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets