Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetry-induced higher-order exceptional points in two dimensions (2401.10913v3)

Published 11 Jan 2024 in cond-mat.mes-hall, physics.optics, and quant-ph

Abstract: Exceptional points of order $n$ (EP$n$s) appear in non-Hermitian systems as points where the eigenvalues and eigenvectors coalesce. They emerge if $2(n-1)$ real constraints are imposed, such that EP2s generically appear in two dimensions (2D). Local symmetries have been shown to reduce this number of constraints. In this work, we provide a complete characterization of the appearance of symmetry-induced higher-order EPs in 2D parameter space. We find that besides EP2s only EP3s, EP4s, and EP5s can be stabilized in 2D. Moreover, these higher-order EPs must always appear in pairs with their dispersion determined by the symmetries. Upon studying the complex spectral structure around these EPs, we find that depending on the symmetry, EP3s are accompanied by EP2 arcs, and two- and three-level open Fermi structures. Similarly, EP4s and closely related EP5s, which arise due to multiple symmetries, are accompanied by exotic EP arcs and open Fermi structures. For each case, we provide an explicit example. We also comment on the topological charge of these EPs, and discuss similarities and differences between symmetry-protected higher-order EPs and EP2s.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. T. Kato, Perturbation theory of linear operators, edited by A. Cappelli and G. Mussardo (Springer, Berlin, 1966).
  2. W. D. Heiss, The physics of exceptional points, Journal of Physics A: Mathematical and Theoretical 45, 444016 (2012).
  3. M.-A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363, eaar7709 (2019).
  4. Z. G. Yuto Ashida and M. Ueda, Non-hermitian physics, Advances in Physics 69, 249 (2020).
  5. E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-hermitian systems, Rev. Mod. Phys. 93, 015005 (2021).
  6. M. V. Berry, Physics of nonhermitian degeneracies, Czechoslovak journal of physics 54, 1039 (2004).
  7. V. Kozii and L. Fu, Non-hermitian topological theory of finite-lifetime quasiparticles: prediction of bulk fermi arc due to exceptional point, arXiv preprint arXiv:1708.05841  (2017).
  8. Y. Xu, S.-T. Wang, and L.-M. Duan, Weyl exceptional rings in a three-dimensional dissipative cold atomic gas, Phys. Rev. Lett. 118, 045701 (2017).
  9. J. Carlström and E. J. Bergholtz, Exceptional links and twisted fermi ribbons in non-hermitian systems, Phys. Rev. A 98, 042114 (2018).
  10. P. Delplace, T. Yoshida, and Y. Hatsugai, Symmetry-protected multifold exceptional points and their topological characterization, Phys. Rev. Lett. 127, 186602 (2021).
  11. S. Sayyad and F. K. Kunst, Realizing exceptional points of any order in the presence of symmetry, Phys. Rev. Res. 4, 023130 (2022).
  12. R. Okugawa and T. Yokoyama, Topological exceptional surfaces in non-hermitian systems with parity-time and parity-particle-hole symmetries, Phys. Rev. B 99, 041202 (2019).
  13. I. Mandal and E. J. Bergholtz, Symmetry and higher-order exceptional points, Phys. Rev. Lett. 127, 186601 (2021).
  14. G.-Q. Zhang and J. Q. You, Higher-order exceptional point in a cavity magnonics system, Phys. Rev. B 99, 054404 (2019).
  15. L. Crippa, J. C. Budich, and G. Sangiovanni, Fourth-order exceptional points in correlated quantum many-body systems, Phys. Rev. B 104, L121109 (2021).
  16. L. Jin, Parity-time-symmetric coupled asymmetric dimers, Phys. Rev. A 97, 012121 (2018).
  17. T. L. Curtright, D. B. Fairlie, and H. Alshal, A galileon primer, arXiv preprint arXiv:1212.6972  (2012).
  18. We note that even though strictly speaking there is no CS with n∈odd𝑛oddn\in\textrm{odd}italic_n ∈ odd, we nevertheless consider this case here in line with the NH literature.
  19. G. Demange and E.-M. Graefe, Signatures of three coalescing eigenfunctions, Journal of Physics A: Mathematical and Theoretical 45, 025303 (2011).
  20. H. Shen, B. Zhen, and L. Fu, Topological band theory for non-hermitian hamiltonians, Phys. Rev. Lett. 120, 146402 (2018).
Citations (5)

Summary

We haven't generated a summary for this paper yet.