Accuracy of metaGGA functionals in describing transition metal fluorides (2401.10832v1)
Abstract: Accurate predictions of material properties within the chemical space of transition metal fluorides (TMFs), using density functional theory (DFT) is important for advancing several technological applications. The state-of-the-art semi-local exchange-correlation functionals within DFT include the strongly constrained and appropriately normed (SCAN) and the restored regularized SCAN (r$2$SCAN), both of which are meta generalized gradient approximation (metaGGA) functionals. Both SCAN and r$2$SCAN are susceptible to self-interaction errors (SIEs) while modelling correlated $d$ electrons of transition metals. Hence, in this work, we evaluate the accuracy of both functionals in estimating properties of TMFs, including redox enthalpies, lattice geometries, on-site magnetic moments, and band gaps. We observe both SCAN and r$2$SCAN to exhibit poor accuracy in estimating fluorination enthalpies among TMFs, attributable to SIEs among the $d$ electrons. Thus, we derive optimal Hubbard $U$ corrections for both functionals based on experimental fluorination enthalpies of binary TMFs. Note that the linear response theory yielded unphysical $U$ values for V, Fe, and Ni fluorides. While adding the optimal $U$ to the metaGGA functionals does not significantly affect the lattice volumes and magnetic moments, it does significantly increase the calculated band gaps. Also, we calculate the average Na intercalation voltage in Mn, Fe, Co, and Ni fluorides as a transferability check of our optimal $U$ values. Overall, we recommend using the Hubbard $U$ correction to improve predictions of redox enthalpies in other TMFs, while for band gap predictions, we suggest using the non-corrected functionals. Finally, our study should advance the accuracy of DFT-based screening studies to unearth novel TMFs, which can be used in various applications, including energy storage, catalysis, and magnetic devices.
- A. C. Garcia-Castro, A. H. Romero, and E. Bousquet, Strain-engineered multiferroicity in p n m a namnf 3 fluoroperovskite, Physical Review Letters 116, 117202 (2016).
- A. Manthiram and J. Goodenough, Lithium insertion into fe2 (so4) 3 frameworks, Journal of Power Sources 26, 403 (1989).
- J. Kim, H. Kim, and K. Kang, Conversion-based cathode materials for rechargeable sodium batteries, Advanced Energy Materials 8, 1702646 (2018).
- G. Sai Gautam, E. B. Stechel, and E. A. Carter, Exploring ca–ce–m–o (m= 3d transition metal) oxide perovskites for solar thermochemical applications, Chemistry of Materials 32, 9964 (2020).
- P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Physical review 136, B864 (1964).
- W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical review 140, A1133 (1965).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters 77, 3865 (1996).
- J. Sun, A. Ruzsinszky, and J. P. Perdew, Strongly constrained and appropriately normed semilocal density functional, Physical review letters 115, 036402 (2015).
- A. P. Bartók and J. R. Yates, Regularized scan functional, The Journal of chemical physics 150, 161101 (2019).
- R. Car, Fixing jacob’s ladder, Nature chemistry 8, 820 (2016).
- J. H. Yang, D. A. Kitchaev, and G. Ceder, Rationalizing accurate structure prediction in the meta-gga scan functional, Physical Review B 100, 035132 (2019).
- Y. Yao and Y. Kanai, Plane-wave pseudopotential implementation and performance of scan meta-gga exchange-correlation functional for extended systems, The Journal of chemical physics 146 (2017).
- Y. Fu and D. J. Singh, Density functional methods for the magnetism of transition metals: Scan in relation to other functionals, Physical Review B 100, 045126 (2019).
- S. Swathilakshmi, R. Devi, and G. Sai Gautam, Performance of the r2scan functional in transition metal oxides, Journal of Chemical Theory and Computation (2023).
- J. Ning, J. W. Furness, and J. Sun, Reliable lattice dynamics from an efficient density functional approximation, Chemistry of Materials 34, 2562 (2022).
- J. Kumar and G. S. Gautam, Study of pnictides for photovoltaic applications, Physical Chemistry Chemical Physics 25, 9626 (2023).
- J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Physical Review B 23, 5048 (1981).
- G. S. Gautam and E. A. Carter, Evaluating transition metal oxides within dft-scan and scan+ u frameworks for solar thermochemical applications, Physical Review Materials 2, 095401 (2018).
- O. Y. Long, G. S. Gautam, and E. A. Carter, Evaluating optimal u for 3 d transition-metal oxides within the scan+ u framework, Physical Review Materials 4, 045401 (2020).
- O. Y. Long, G. S. Gautam, and E. A. Carter, Assessing cathode property prediction via exchange-correlation functionals with and without long-range dispersion corrections, Physical Chemistry Chemical Physics 23, 24726 (2021).
- V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and mott insulators: Hubbard u instead of stoner i, Physical Review B 44, 943 (1991).
- I. Timrov, N. Marzari, and M. Cococcioni, Hubbard parameters from density-functional perturbation theory, Physical Review B 98, 085127 (2018).
- M. Shishkin and H. Sato, Self-consistent parametrization of dft+ u framework using linear response approach: Application to evaluation of redox potentials of battery cathodes, Physical Review B 93, 085135 (2016).
- N. J. Mosey and E. A. Carter, Ab initio evaluation of coulomb and exchange parameters for dft+ u calculations, Physical Review B 76, 155123 (2007).
- N. J. Mosey, P. Liao, and E. A. Carter, Rotationally invariant ab initio evaluation of coulomb and exchange parameters for dft+ u calculations, The Journal of chemical physics 129 (2008).
- L. Wang, T. Maxisch, and G. Ceder, Oxidation energies of transition metal oxides within the gga+ u framework, Physical Review B 73, 195107 (2006).
- G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47, 558 (1993).
- G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical review B 54, 11169 (1996).
- G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical review b 59, 1758 (1999).
- P. E. Blöchl, Projector augmented-wave method, Physical review B 50, 17953 (1994).
- H. J. Monkhorst and J. D. Pack, Special points for brillouin-zone integrations, Physical review B 13, 5188 (1976).
- M. Hellenbrandt, The inorganic crystal structure database (icsd)—present and future, Crystallography Reviews 10, 17 (2004).
- T. C. Allison, Nist-janaf thermochemical tables - srd 13 (1998).
- I. Barin, Thermochemical Data of Pure Substances, 3rd ed. (John Wiley & Sons, Ltd, 1995).
- D. D. Wagman, Nbs tables of chemical thermodynamic properties, J. Phys. Chem. Ref. Data 11 (1982).
- G. K. Johnson, The enthalpy of formation of fef3 by fluorine bomb calorimetry, The Journal of Chemical Thermodynamics 13, 465 (1981).
- M. Aykol and C. Wolverton, Local environment dependent gga+ u method for accurate thermochemistry of transition metal compounds, Physical Review B 90, 115105 (2014).
- M. Cococcioni and S. De Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the lda+ u method, Physical Review B 71, 035105 (2005).
- D. Sheets, Frustrated magnetic state of mott insulating tif3, Bulletin of the American Physical Society (2023).
- T. Chatterji and T. C. Hansen, Magnetoelastic effects in jahn–teller distorted crf2 and cuf2 studied by neutron powder diffraction, Journal of Physics: Condensed Matter 23, 276007 (2011).
- K. Lutar, A. Jesih, and B. Žemva, Krf2/mnf4 adducts from krf2/mnf2 interaction in hf as a route to high purity mnf4, Polyhedron 7, 1217 (1988).
- T. Chatterji, B. Ouladdiaf, and T. C. Hansen, The magnetoelastic effect in cof2 investigated by means of neutron powder diffraction, Journal of Physics: Condensed Matter 22, 096001 (2010a).
- W. H. Baur and A. A. Khan, Rutile-type compounds. iv. sio2, geo2 and a comparison with other rutile-type structures, Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 27, 2133 (1971).
- Proceedings of the chemical society., Proc. Chem. Soc. , 185 (1957).
- P. C. Burns and F. C. Hawthorne, Rietveld refinement of the crystal structure of cuf2, Powder Diffraction 6, 156 (1991).
- S. Siegel, The structure of TiF33{{}_{3}}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT, Acta Crystallographica 9, 684 (1956).
- K. Jack and V. Gutmann, The crystal structure of vanadium trifluoride vf3, Acta Crystallographica 4, 246 (1951).
- K. Knox, Structures of chromium (iii) fluoride, Acta Crystallographica 13, 507 (1960).
- M. A. Hepworth and K. H. Jack, The crystal structure of manganese trifluoride, MnF33{{}_{3}}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT, Acta Crystallographica 10, 345 (1957).
- H. Bialowons, M. Müller, and B. Müller, Titantetrafluorid–eine überraschend einfache kolumnarstruktur, Zeitschrift für anorganische und allgemeine Chemie 621, 1227 (1995).
- S. Becker and B. G. Müller, Vanadiumtetrafluorid, Angewandte Chemie 102, 426 (1990).
- O. Krämer and B. Müller, Zur struktur des chromtetrafluorids, Zeitschrift für anorganische und allgemeine Chemie 621, 1969 (1995).
- B. G. Müller and M. Serafin, Die kristallstruktur von mangantetrafluorid the crystal/structure of manganese tetrafluoride, Zeitschrift für Naturforschung B 42, 1102 (1987).
- D. R. Lide, CRC handbook of chemistry and physics, Vol. 85 (CRC press, 2004).
- M. Nikitin and A. Alikhanyan, Thermochemistry of nickel trifluoride, Russian Journal of Inorganic Chemistry 64, 641 (2019).
- R. E. Hummel, Electronic Properties of Materials (Springer, New York, NY, 2011).
- A. Devey, R. Grau-Crespo, and N. De Leeuw, Electronic and magnetic structure of fe 3 s 4: Gga+ u investigation, Physical Review B 79, 195126 (2009).
- N. Tancogne-Dejean and A. Rubio, Parameter-free hybridlike functional based on an extended hubbard model: Dft+ u+ v, Physical Review B 102, 155117 (2020).
- F. Aryasetiawan and O. Gunnarsson, Electronic structure of nio in the gw approximation, Physical review letters 74, 3221 (1995).