Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Composite learning backstepping control with guaranteed exponential stability and robustness (2401.10785v1)

Published 19 Jan 2024 in eess.SY and cs.SY

Abstract: Adaptive backstepping control provides a feasible solution to achieve asymptotic tracking for mismatched uncertain nonlinear systems. However, input-to-state stability depends on high-gain feedback generated by nonlinear damping terms, and closed-loop exponential stability with parameter convergence involves a stringent condition named persistent excitation (PE). This paper proposes a composite learning backstepping control (CLBC) strategy based on modular backstepping and high-order tuners to compensate for the transient process of parameter estimation and achieve closed-loop exponential stability without the nonlinear damping terms and the PE condition. A novel composite learning mechanism that maximizes the staged exciting strength is designed for parameter estimation, such that parameter convergence can be achieved under a condition of interval excitation (IE) or even partial IE that is strictly weaker than PE. An extra prediction error is employed in the adaptive law to ensure the transient performance without nonlinear damping terms. The exponential stability of the closed-loop system is proved rigorously under the partial IE or IE condition. Simulations have demonstrated the effectiveness and superiority of the proposed method in both parameter estimation and control compared to state-of-the-art methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. G. Tao, “Multivariable adaptive control: A survey,” Automatica, vol. 50, no. 11, pp. 2737–2764, Nov. 2014.
  2. L. Chan, F. Naghdy, and D. Stirling, “Application of adaptive controllers in teleoperation systems: A survey,” IEEE Trans. Human-Mach. Syst., vol. 44, no. 3, pp. 337–352, Jun. 2014.
  3. S. P. Nageshrao, G. A. D. Lopes, D. Jeltsema, and R. Babuška, “Port-hamiltonian systems in adaptive and learning control: A survey,” IEEE Trans. Autom. Control, vol. 61, no. 5, pp. 1223–1238, May 2016.
  4. A. M. Annaswamy and A. L. Fradkov, “A historical perspective of adaptive control and learning,” Annu. Rev. Control, vol. 52, pp. 18–41, Dec. 2021.
  5. R. Ortega, V. Nikiforov, and D. Gerasimov, “On modified parameter estimators for identification and adaptive control. A unified framework and some new schemes,” Annu. Rev. Control, vol. 50, pp. 278–293, 2020.
  6. K. Guo and Y. Pan, “Composite adaptation and learning for robot control: A survey,” Annu. Rev. Control, vol. 55, pp. 279–290, Dec. 2023.
  7. I. Kanellakopoulos, P. V. Kokotović, and A. S. Morse, “Systematic design of adaptive controllers for feedback linearizable systems,” IEEE Trans. Autom. Control, vol. 36, no. 11, pp. 1241–1253, Nov. 1991.
  8. G. Tao and L. Wen, “Higher-order tracking properties of adaptive backstepping control systems,” Automatica, vol. 153, Art. No. 111019, Jul. 2023.
  9. Y. Pan, T. Sun, and H. Yu, “Composite adaptive dynamic surface control using online recorded data,” Int. J. Robust Nonlinear Control, vol. 26, no. 18, pp. 3921–3936, Dec. 2016.
  10. D. Wang, “Neural network-based adaptive dynamic surface control of uncertain nonlinear pure-feedback systems,” Int. J. Robust Nonlinear Control, vol. 21, no. 5, pp. 527–541, Mar. 2011.
  11. Z. Zhang, G. Duan, and M. Hou, “An improved adaptive dynamic surface control approach for uncertain nonlinear systems,” Int. J. Adapt. Control Signal Process., vol. 32, no. 5, pp. 713–728, May 2018.
  12. S. Ling, H. Wang, and P. X. Liu, “Adaptive tracking control of high-order nonlinear systems under asymmetric output constraint,” Automatica, vol. 122, Art. No. 109281, Dec. 2020.
  13. K. Zhao, Y. Song, and Z. Zhang, “Tracking control of MIMO nonlinear systems under full state constraints: A single-parameter adaptation approach free from feasibility conditions,” Automatica, vol. 107, pp. 52–60, Sep. 2019.
  14. C. Bechlioulis and G. Rovithakis, “Reinforcing robustness of adaptive dynamic surface control,” Int. J. Adapt. Control Signal Process., vol. 27, no. 4, pp. 323–339, Apr. 2013.
  15. J. A. Farrell, M. Polycarpou, M. Sharma, and W. Dong, “Command filtered backstepping,” IEEE Trans. Autom. Control, vol. 54, no. 6, pp. 1391–1395, Jun. 2009.
  16. J. Farrell, M. Sharma, and M. Polycarpou, “Backstepping-based flight control with adaptive function approximation,” J. Guid., Control, Dyn., vol. 28, no. 6, pp. 1089–1102, Nov.-Dec. 2005.
  17. Y. Pan, Y. Liu, and H. Yu, “Online data-driven composite adaptive backstepping control with exact differentiators,” Int. J. Adapt. Control Signal Process., vol. 30, no. 5, pp. 779–789, May 2016.
  18. J. Hu and H. Zhang, “Immersion and invariance based command-filtered adaptive backstepping control of VTOL vehicles,” Automatica, vol. 49, no. 7, pp. 2160–2167, Jul. 2013.
  19. Y. Pan, T. Sun, and H. Yu, “Composite learning from adaptive dynamic surface control,” IEEE Trans. Autom. Control, vol. 61, no. 9, pp. 2603–2609, Sep. 2016.
  20. W. Wang and C. Wen, “Adaptive compensation for infinite number of actuator failures or faults,” Automatica, vol. 47, no. 10, pp. 2197–2210, Oct. 2011.
  21. A. S. Morse, “High-order parameter tuners for the adaptive control of linear and nonlinear systems,” in Systems, Models and Feedback: Theory and Applications, A. Isidori and T.-J. Tarn, Eds., vol. 12.   Boston, MA: Birkhäuser, 1992, pp. 339–364.
  22. V. O. Nikiforov and K. V. Voronov, “Adaptive backstepping with a high-order tuner,” Automatica, vol. 37, no. 12, pp. 1953–1960, Dec. 2001.
  23. V. Nikiforov, D. Gerasimov, and A. Pashenko, “Modular adaptive backstepping design with a high-order tuner,” IEEE Trans. Autom. Control, vol. 67, no. 5, pp. 2663–2668, May 2022.
  24. G. Kreisselmeier and G. Rietze-Augst, “Richness and excitation on an interval-with application to continuous-time adaptive control,” IEEE Trans. Autom. Control, vol. 35, no. 2, pp. 165–171, Feb. 1990.
  25. D. N. Gerasimov and V. O. Nikiforov, “On key properties of the Lion’s and Kreisselmeier’s adaptation algorithms,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 3773–3778, 2020.
  26. W. Dong, J. A. Farrell, M. M. Polycarpou, V. Djapic, and M. Sharma, “Command filtered adaptive backstepping,” IEEE Trans. Control Syst. Technol., vol. 20, no. 3, pp. 566–580, May 2012.
  27. B. Lai, Z. Li, W. Li, C. Yang, and Y. Pan, “Homography-based visual servoing of eye-in-hand robots with exact depth estimation,” IEEE Trans. Ind. Electron., vol. 71, no. 4, pp. 3832–3841, Apr. 2024.
  28. Y. Pan, Z. Li, T. Shi, and C. Wen, “Composite learning variable impedance robot control with stability and passivity guarantees,” IEEE Robot. Autom. Lett., vol. 9, no. 1, pp. 119–126, Jan. 2024.
  29. Y. Pan, K. Guo, A. Bobtsov, C. Yang, and H. Yu, “Composite error learning robot control using discontinuous lyapunov analysis,” IEEE Trans. Autom. Control, vol. to be published, 2024.
  30. Z. Li, B. Lai, H. Wang, and Y. Pan, “Homography-based visual servoing of robot pose under an uncalibrated eye-to-hand camera,” IEEE/ASME Trans. Mechatron., vol. to be published, 2024.
  31. Z. Li, B. Lai, and Y. Pan, “Image-based composite learning robot visual servoing with an uncalibrated eye-to-hand camera,” IEEE/ASME Trans. Mechatron., vol. to be published, 2024.
  32. V. Adetola and M. Guay, “Performance improvement in adaptive control of linearly parameterized nonlinear systems,” IEEE Trans. Autom. Control, vol. 55, no. 9, pp. 2182–2186, Sep. 2010.

Summary

We haven't generated a summary for this paper yet.