Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast gradient-free activation maximization for neurons in spiking neural networks (2401.10748v2)

Published 28 Dec 2023 in cs.NE and cs.LG

Abstract: Elements of neural networks, both biological and artificial, can be described by their selectivity for specific cognitive features. Understanding these features is important for understanding the inner workings of neural networks. For a living system, such as a neuron, whose response to a stimulus is unknown and not differentiable, the only way to reveal these features is through a feedback loop that exposes it to a large set of different stimuli. The properties of these stimuli should be varied iteratively in order to maximize the neuronal response. To utilize this feedback loop for a biological neural network, it is important to run it quickly and efficiently in order to reach the stimuli that maximizes certain neurons' activation with the least number of iterations possible. Here we present a framework with an efficient design for such a loop. We successfully tested it on an artificial spiking neural network (SNN), which is a model that simulates the asynchronous spiking activity of neurons in living brains. Our optimization method for activation maximization is based on the low-rank Tensor Train decomposition of the discrete activation function. The optimization space is the latent parameter space of images generated by SN-GAN or VQ-VAE generative models. To our knowledge, this is the first time that effective AM has been applied to SNNs. We track changes in the optimal stimuli for artificial neurons during training and show that highly selective neurons can form already in the early epochs of training and in the early layers of a convolutional spiking network. This formation of refined optimal stimuli is associated with an increase in classification accuracy. Some neurons, especially in the deeper layers, may gradually change the concepts they are selective for during learning, potentially explaining their importance for model performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. D. H. Hubel and T. N. Wiesel, Brain and visual perception: the story of a 25-year collaboration. Oxford University Press, 2004.
  2. J. Vierock, S. Rodriguez-Rozada, A. Dieter, F. Pieper, R. Sims, F. Tenedini, A. C. Bergs, I. Bendifallah, F. Zhou, N. Zeitzschel, et al., “Bipoles is an optogenetic tool developed for bidirectional dual-color control of neurons,” Nature communications, vol. 12, no. 1, p. 4527, 2021.
  3. C. R. Ponce, W. Xiao, P. F. Schade, T. S. Hartmann, G. Kreiman, and M. S. Livingstone, “Evolving images for visual neurons using a deep generative network reveals coding principles and neuronal preferences,” Cell, vol. 177, no. 4, pp. 999–1009, 2019.
  4. A. Bardon, W. Xiao, C. R. Ponce, M. S. Livingstone, and G. Kreiman, “Face neurons encode nonsemantic features,” Proceedings of the national academy of sciences, vol. 119, no. 16, p. e2118705119, 2022.
  5. A. J. Shriver and T. M. John, “Neuroethics and animals: report and recommendations from the university of pennsylvania animal research neuroethics workshop,” ILAR journal, vol. 60, no. 3, pp. 424–433, 2019.
  6. P. Singer and Y. F. Tse, “Ai ethics: the case for including animals,” AI and Ethics, vol. 3, no. 2, pp. 539–551, 2023.
  7. K. Dobs, J. Martinez, A. J. Kell, and N. Kanwisher, “Brain-like functional specialization emerges spontaneously in deep neural networks,” Science advances, vol. 8, no. 11, p. eabl8913, 2022.
  8. A. M. Zador, “A critique of pure learning and what artificial neural networks can learn from animal brains,” Nature communications, vol. 10, no. 1, p. 3770, 2019.
  9. R. Schaeffer, M. Khona, and I. Fiete, “No free lunch from deep learning in neuroscience: A case study through models of the entorhinal-hippocampal circuit,” Advances in Neural Information Processing Systems, vol. 35, pp. 16052–16067, 2022.
  10. G. Goh, N. Cammarata, C. Voss, S. Carter, M. Petrov, L. Schubert, A. Radford, and C. Olah, “Multimodal neurons in artificial neural networks,” Distill, vol. 6, no. 3, p. e30, 2021.
  11. C. Olah, A. Mordvintsev, and L. Schubert, “Feature visualization,” Distill, 2017. https://distill.pub/2017/feature-visualization.
  12. B. Wang and C. R. Ponce, “High-performance evolutionary algorithms for online neuron control,” in Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1308–1316, 2022.
  13. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural information processing systems, vol. 27, 2014.
  14. K. Sozykin, A. Chertkov, R. Schutski, A.-H. Phan, A. S. CICHOCKI, and I. Oseledets, “Ttopt: A maximum volume quantized tensor train-based optimization and its application to reinforcement learning,” Advances in Neural Information Processing Systems, vol. 35, pp. 26052–26065, 2022.
  15. I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific Computing, vol. 33, no. 5, pp. 2295–2317, 2011.
  16. K. Yamazaki, V.-K. Vo-Ho, D. Bulsara, and N. Le, “Spiking neural networks and their applications: A review,” Brain Sciences, vol. 12, no. 7, p. 863, 2022.
  17. Y. Li, Y. Kim, H. Park, and P. Panda, “Uncovering the representation of spiking neural networks trained with surrogate gradient,” arXiv preprint arXiv:2304.13098, 2023.
  18. E. Y. Walker, F. H. Sinz, E. Cobos, T. Muhammad, E. Froudarakis, P. G. Fahey, A. S. Ecker, J. Reimer, X. Pitkow, and A. S. Tolias, “Inception loops discover what excites neurons most using deep predictive models,” Nature neuroscience, vol. 22, no. 12, pp. 2060–2065, 2019.
  19. S. A. Matveev, I. V. Oseledets, E. S. Ponomarev, and A. V. Chertkov, “Overview of visualization methods for artificial neural networks,” Computational Mathematics and Mathematical Physics, vol. 61, no. 5, pp. 887–899, 2021.
  20. W. Xiao and G. Kreiman, “Xdream: Finding preferred stimuli for visual neurons using generative networks and gradient-free optimization,” PLoS computational biology, vol. 16, no. 6, p. e1007973, 2020.
  21. W. Xiao and G. Kreiman, “Gradient-free activation maximization for identifying effective stimuli,” arXiv preprint arXiv:1905.00378, 2019.
  22. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444, 2015.
  23. MIT press, 2016.
  24. E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.
  25. W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The bulletin of mathematical biophysics, vol. 5, pp. 115–133, 1943.
  26. Cornell Aeronautical Laboratory, 1957.
  27. F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386, 1958.
  28. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.
  29. W. Maass, “Networks of spiking neurons: the third generation of neural network models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.
  30. N. Anwani and B. Rajendran, “Training multi-layer spiking neural networks using normad based spatio-temporal error backpropagation,” Neurocomputing, vol. 380, pp. 67–77, 2020.
  31. J. K. Eshraghian, M. Ward, E. Neftci, X. Wang, G. Lenz, G. Dwivedi, M. Bennamoun, D. S. Jeong, and W. D. Lu, “Training spiking neural networks using lessons from deep learning,” Proceedings of the IEEE, vol. 111, no. 9, pp. 1016–1054, 2023.
  32. W. Fang, Y. Chen, J. Ding, Z. Yu, T. Masquelier, D. Chen, L. Huang, H. Zhou, G. Li, and Y. Tian, “Spikingjelly: An open-source machine learning infrastructure platform for spike-based intelligence,” Science Advances, vol. 9, no. 40, p. eadi1480, 2023.
  33. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.
  34. A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” The Journal of physiology, vol. 117, no. 4, p. 500, 1952.
  35. N. Brunel and M. C. Van Rossum, “Lapicque’s 1907 paper: from frogs to integrate-and-fire,” Biological cybernetics, vol. 97, no. 5-6, pp. 337–339, 2007.
  36. A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing neural networks,” Advances in neural information processing systems, vol. 28, 2015.
  37. D. Liu, L. T. Yang, P. Wang, R. Zhao, and Q. Zhang, “Tt-tsvd: A multi-modal tensor train decomposition with its application in convolutional neural networks for smart healthcare,” ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), vol. 18, no. 1s, pp. 1–17, 2022.
  38. A. Chertkov, G. Ryzhakov, G. Novikov, and I. Oseledets, “Optimization of functions given in the tensor train format,” arXiv preprint arXiv:2209.14808, 2022.
  39. A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, D. P. Mandic, et al., “Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decompositions,” Foundations and Trends® in Machine Learning, vol. 9, no. 4-5, pp. 249–429, 2016.
  40. A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. Oseledets, M. Sugiyama, D. P. Mandic, et al., “Tensor networks for dimensionality reduction and large-scale optimization: Part 2 applications and future perspectives,” Foundations and Trends® in Machine Learning, vol. 9, no. 6, pp. 431–673, 2017.
  41. A. Batsheva, A. Chertkov, G. Ryzhakov, and I. Oseledets, “PROTES: Probabilistic optimization with tensor sampling,” Advances in Neural Information Processing Systems, 2023.
  42. M. W. Trosset, “What is simulated annealing?,” Optimization and Engineering, vol. 2, pp. 201–213, 2001.
  43. R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning,” Machine learning, vol. 8, pp. 229–256, 1992.
  44. A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,” 2009.
  45. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
  46. A. Van Den Oord, O. Vinyals, et al., “Neural discrete representation learning,” Advances in neural information processing systems, vol. 30, 2017.
  47. T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for generative adversarial networks,” arXiv preprint arXiv:1802.05957, 2018.
  48. T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved techniques for training gans,” Advances in neural information processing systems, vol. 29, 2016.
  49. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two time-scale update rule converge to a local nash equilibrium,” Advances in neural information processing systems, vol. 30, 2017.
  50. J. Rapin and O. Teytaud, “Nevergrad - A gradient-free optimization platform.” https://GitHub.com/FacebookResearch/Nevergrad, 2018.
  51. Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun. com/exdb/mnist/, 1998.
  52. H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms,” arXiv preprint arXiv:1708.07747, 2017.
  53. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255, Ieee, 2009.
  54. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in neural information processing systems, vol. 25, 2012.
  55. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708, 2017.
  56. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  57. P. Esser, R. Rombach, and B. Ommer, “Taming transformers for high-resolution image synthesis,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12873–12883, 2021.
  58. D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing higher-layer features of a deep network,” University of Montreal, vol. 1341, no. 3, p. 1, 2009.
  59. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE international conference on computer vision, pp. 618–626, 2017.
  60. M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,” in International conference on machine learning, pp. 3319–3328, PMLR, 2017.
  61. P. Kostenetskiy, R. Chulkevich, and V. Kozyrev, “Hpc resources of the higher school of economics,” in Journal of Physics: Conference Series, vol. 1740, p. 012050, IOP Publishing, 2021.

Summary

We haven't generated a summary for this paper yet.