Character Recognition in Byzantine Seals with Deep Neural Networks (2401.10741v1)
Abstract: Seals are small coin-shaped artifacts, mostly made of lead, held with strings to seal letters. This work presents the first attempt towards automatic reading of text on Byzantine seal images.Byzantine seals are generally decorated with iconography on the obverse side and Greek text on the reverse side. Text may include the sender's name, position in the Byzantine aristocracy, and elements of prayers. Both text and iconography are precious literary sources that wait to be exploited electronically, so the development of computerized systems for interpreting seals images is of paramount importance. This work's contribution is hence a deep, two-stages, character reading pipeline for transcribing Byzantine seal images. A first deep convolutional neural network (CNN) detects characters in the seal (character localization). A second convolutional network reads the localized characters (character classification). Finally, a diplomatic transcription of the seal is provided by post-processing the two network outputs. We provide an experimental evaluation of each CNN in isolation and both CNNs in combination. All performances are evaluated by cross-validation. Character localization achieves a mean average precision ([email protected]) greater than 0.9. Classification of characters cropped from ground truth bounding boxes achieves Top-1 accuracy greater than 0.92. End-to-end evaluation shows the efficiency of the proposed approach when compared to the SoTA for similar tasks.
- Contributions of the digital photogrammetry and 3d modelling of roman inscriptions to the reading of damaged tituli: An example from the hispania tarraconensis (castiliscar, saragossa). Digital Applications in Archaeology and Cultural Heritage 12, e00091. URL: https://www.sciencedirect.com/science/article/pii/S2212054818300419, doi:https://doi.org/10.1016/j.daach.2019.e00091.
- DATeCH2019: Proceedings of the 3rd International Conference on Digital Access to Textual Cultural Heritage, Association for Computing Machinery, New York, NY, USA.
- Automatic attribution of ancient roman imperial coins, in: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1728–1734. doi:10.1109/CVPR.2010.5539841.
- Restoring and attributing ancient texts using deep neural networks. Nature 603, 280–283.
- Stn-ocr: A single neural network for text detection and text recognition. URL: https://arxiv.org/abs/1707.08831, doi:10.48550/ARXIV.1707.08831.
- Archive archaeology in palmyra, syria a new 3d reconstruction of the tomb of hairan. Digital Applications in Archaeology and Cultural Heritage 19, e00164. URL: https://www.sciencedirect.com/science/article/pii/S2212054820300631, doi:https://doi.org/10.1016/j.daach.2020.e00164.
- Sceaux de la collection georges zacos au musée d’art et d’histoire de genève.
- Classification of engraved pottery sherds mixing deep-learning features by compact bilinear pooling. Pattern Recognition Letters 131, 1–7. URL: https://www.sciencedirect.com/science/article/pii/S0167865519303721, doi:https://doi.org/10.1016/j.patrec.2019.12.009.
- Les sceaux byzantins de la collection yavuz tatiş.
- Feature-extraction methods for historical manuscript dating based on writing style development. Pattern Recognit. Lett. 131, 413–420. URL: https://doi.org/10.1016/j.patrec.2020.01.027, doi:10.1016/j.patrec.2020.01.027.
- Deep residual learning for image recognition. URL: https://arxiv.org/abs/1512.03385, doi:10.48550/ARXIV.1512.03385.
- YOLOv5. https://github.com/ultralytics/yolov5. [Online; accessed on 25 April 2022].
- Introducing athena ruby, dumbarton oaks’ new font for byzantine inscriptions, in: Rhoby, A. (Ed.), Inscriptions in Byzantium and Beyond: Methods – Projects – Case Studies, pp. 121–126.
- Reading the legends of roman republican coins. ACM Journal on Computing and Cultural Heritage 7, 5:1–5:20. URL: https://doi.org/10.1145/2583115, doi:10.1145/2583115.
- Ancoins: Image-based automated identification of ancient coins through transfer learning approaches, in: Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M., Escalante, H.J., Vezzani, R. (Eds.), Pattern Recognition. ICPR International Workshops and Challenges, Springer International Publishing, Cham. pp. 54–67.
- Gradient-based learning applied to document recognition. Proceedings of the IEEE .
- Learning-free text-image alignment for medieval manuscripts, in: 14th International Conference on Frontiers in Handwriting Recognition, ICFHR 2014, Crete, Greece, September 1-4, 2014, IEEE Computer Society. pp. 363–368. URL: https://doi.org/10.1109/ICFHR.2014.67, doi:10.1109/ICFHR.2014.67.
- A hough based algorithm for extracting text lines in handwritten documents. Proceedings of 3rd International Conference on Document Analysis and Recognition 2, 774–777 vol.2. doi:10.1109/ICDAR.1995.602017.
- HST-GAN: historical style transfer GAN for generating historical text images, in: Uchida, S., Smith, E.H.B., Eglin, V. (Eds.), Document Analysis Systems - 15th IAPR International Workshop, DAS 2022, La Rochelle, France, May 22-25, 2022, Proceedings, Springer. pp. 523–537. URL: https://doi.org/10.1007/978-3-031-06555-2_35, doi:10.1007/978-3-031-06555-2_35.
- Visual enhancement of incised text. Pattern Recognit. 36, 1031–1043. URL: https://doi.org/10.1016/S0031-3203(02)00112-7, doi:10.1016/S0031-3203(02)00112-7.
- On the use of attention in deep learning based denoising method for ancient cham inscription images, in: Lladós, J., Lopresti, D., Uchida, S. (Eds.), 16th International Conference on Document Analysis and Recognition, ICDAR 2021, Lausanne, Switzerland, September 5-10, 2021, Proceedings, Part I, Springer. pp. 400–415. URL: https://doi.org/10.1007/978-3-030-86549-8_26, doi:10.1007/978-3-030-86549-8_26.
- A survey on performance metrics for object-detection algorithms, in: 2020 International Conference on Systems, Signals and Image Processing, IWSSIP 2020, Niterói, Brazil, July 1-3, 2020, IEEE. pp. 237–242. URL: https://doi.org/10.1109/IWSSIP48289.2020.9145130, doi:10.1109/IWSSIP48289.2020.9145130.
- A New Database of Digits Extracted from Coins with Hard-to-Segment Foreground for OCR Evaluation. Frontiers in information and communication technologies 4. URL: https://hal.science/hal-01518293, doi:10.3389/fict.2017.00009.
- Self-supervised deep metric learning for ancient papyrus fragments retrieval. Int. J. Document Anal. Recognit. 24, 219–234. URL: https://doi.org/10.1007/s10032-021-00369-1, doi:10.1007/s10032-021-00369-1.
- Embedded attributes for cuneiform sign spotting, in: Lladós, J., Lopresti, D., Uchida, S. (Eds.), 16th International Conference on Document Analysis and Recognition, ICDAR 2021, Lausanne, Switzerland, September 5-10, 2021, Proceedings, Part II, Springer. pp. 291–305. URL: https://doi.org/10.1007/978-3-030-86331-9_19, doi:10.1007/978-3-030-86331-9_19.
- Imagenet large scale visual recognition challenge. URL: https://arxiv.org/abs/1409.0575, doi:10.48550/ARXIV.1409.0575.
- Quaternion generative adversarial networks for inscription detection in byzantine monuments, in: Bimbo, A.D., Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M., Escalante, H.J., Vezzani, R. (Eds.), Pattern Recognition. ICPR International Workshops and Challenges - Virtual Event, January 10-15, 2021, Proceedings, Part VII, Springer. pp. 171–184. URL: https://doi.org/10.1007/978-3-030-68787-8_12, doi:10.1007/978-3-030-68787-8_12.
- One-shot compositional data generation for low resource handwritten text recognition, in: IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022, Waikoloa, HI, USA, January 3-8, 2022, IEEE. pp. 2563–2571. URL: https://doi.org/10.1109/WACV51458.2022.00262, doi:10.1109/WACV51458.2022.00262.
- Scene text detection and recognition: recent advances and future trends. Frontiers Computer Science: Selected Publications from Chinese Universities 10.
- Théophile Rageau (2 papers)
- Laurence Likforman-Sulem (4 papers)
- Attilio Fiandrotti (27 papers)
- Victoria Eyharabide (1 paper)
- Béatrice Caseau (1 paper)
- Jean-Claude Cheynet (1 paper)