Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-hydrostatic mesoscale atmospheric modeling by the anisotropic mesh adaptive discontinuous Galerkin method (2401.10662v1)

Published 19 Jan 2024 in math.NA and cs.NA

Abstract: We deal with non-hydrostatic mesoscale atmospheric modeling using the fully implicit space-time discontinuous Galerkin method in combination with the anisotropic $hp$-mesh adaptation technique. The time discontinuous approximation allows the treatment of different meshes at different time levels in a natural way which can significantly reduce the number of degrees of freedom. The presented approach generates a sequence of triangular meshes consisting of possible anisotropic elements and varying polynomial approximation degrees such that the interpolation error is below the given tolerance and the number of degrees of freedom at each time step is minimal. We describe the discretization of the problem together with several implementation issues related to the treatment of boundary conditions, algebraic solver and adaptive choice of the size of the time steps.The computational performance of the proposed method is demonstrated on several benchmark problems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. J. Comput. Phys. 373, 28–63 (2018)
  2. J. Comput. Phys. 231(19), 6323–6348 (2012)
  3. Comput. Fluids 198 (2020)
  4. Springer (2004)
  5. Charles University, Prague, Faculty of Mathematics and Physics (2000). https://msekce.karlin.mff.cuni.cz/~dolejsi/angen/
  6. Dolejší, V.: Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows. Commun. Comput. Phys. 4(2), 231–274 (2008)
  7. Charles University, Prague, Faculty of Mathematics and Physics (2020). https://msekce.karlin.mff.cuni.cz/~dolejsi/adgfem/
  8. Springer Series in Computational Mathematics 48. Springer, Cham (2015)
  9. Birkhäuser (2022)
  10. Comput. Fluids 117, 304–324 (2015)
  11. J. Sci. Comput. 95(2) (2023)
  12. Clarendon Press, Oxford (2003)
  13. Comput. Methods Appl. Mech. Engrg. 194, 5068–5082 (2005)
  14. J. Comput. Phys. 227(8), 3849–3877 (2008)
  15. SIAM J. Sci. Comput. 32(6), 3394–3425 (2010)
  16. J. Comput. Phys. 207(1), 129–150 (2005)
  17. Springer (2020)
  18. Mon. Weather Rev. 132(1), 133–153 (2004)
  19. Int. J. Numer. Methods Fluids 32(6), 725–744 (2000)
  20. Hunter, J.D.: Matplotlib: A 2D graphics environment. Computing in Science & Engineering 9(3), 90–95 (2007)
  21. J. Comput. Phys. 463 (2022)
  22. SIAM J. Sci. Comput. 26(1), 1–30 (2004)
  23. J. Comput. Phys. 489 (2023)
  24. J. Comput. Appl. Math. 427 (2023)
  25. J. Comput. Phys. 491 (2023)
  26. SIAM J. Sci. Comput. 31(3), 2231–2257 (2009)
  27. Robert, A.: Bubble convection experiments with a semi-implicit formulation of the Euler equations. J. Atmos. Sci. 50(13), 1865 – 1873 (1993)
  28. Mon. Weather Rev. 130, 2459–2480 (2002)
  29. Mon. Weather Rev. 122(11), 2623–2630 (1994)
  30. Meteorol. Atmos. Phys. pp. 287–301 (2003)
  31. Int. J. Numer. Meth. Fluids 17(1), 1– 22 (1993)
  32. J. Comput. Phys. 468 (2022)
  33. J. Comput. Phys. 268, 106 – 133 (2014)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com