Quantum Computing Enhanced Service Ecosystem for Simulation in Manufacturing (2401.10623v3)
Abstract: Quantum computing (QC) and ML, taken individually or combined into quantum-assisted ML (QML), are ascending computing paradigms whose calculations come with huge potential for speedup, increase in precision, and resource reductions. Likely improvements for numerical simulations in engineering imply the possibility of a strong economic impact on the manufacturing industry. In this project report, we propose a framework for a quantum computing-enhanced service ecosystem for simulation in manufacturing, consisting of various layers ranging from hardware to algorithms to service and organizational layers. In addition, we give insight into the current state of the art of applications research based on QC and QML, both from a scientific and an industrial point of view. We further analyse two high-value use cases with the aim of a quantitative evaluation of these new computing paradigms for industrially-relevant settings.
- DOI 10.1088/1367-2630/aad1ea. URL https://dx.doi.org/10.1088/1367-2630/aad1ea
- URL https://en.acatech.de/publication/the-innovation-potential-of-second-generation-quantum-technologies/
- DOI 10.1103/RevModPhys.92.015003. URL https://link.aps.org/doi/10.1103/RevModPhys.92.015003
- DOI 10.1103/PhysRevA.93.032324. URL https://link.aps.org/doi/10.1103/PhysRevA.93.032324
- DOI 10.1038/nature23474. URL https://doi.org/10.1038/nature23474
- DOI 10.1080/00107514.2014.964942. URL https://doi.org/10.1080/00107514.2014.964942
- DOI 10.22331/q-2018-08-06-79. URL https://doi.org/10.22331/q-2018-08-06-79
- DOI 10.1103/RevModPhys.86.153. URL https://link.aps.org/doi/10.1103/RevModPhys.86.153
- DOI 10.1103/PhysRevLett.83.5162. URL https://link.aps.org/doi/10.1103/PhysRevLett.83.5162
- DOI 10.1137/S0097539795293172. URL https://doi.org/10.1137/S0097539795293172
- DOI 10.1103/PhysRevLett.103.150502. URL https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
- DOI 10.48550/arXiv.2310.03011
- DOI 10.1126/science.273.5278.1073. URL https://www.science.org/doi/abs/10.1126/science.273.5278.1073
- DOI 10.1145/780542.780546. URL https://doi.org/10.1145/780542.780546
- DOI 10.1007/s00220-006-0150-x. URL https://doi.org/10.1007/s00220-006-0150-x
- DOI 10.1007/s00220-009-0930-1. URL https://doi.org/10.1007/s00220-009-0930-1
- DOI 10.1103/PhysRevLett.118.010501. URL https://link.aps.org/doi/10.1103/PhysRevLett.118.010501
- DOI 10.22331/q-2019-07-12-163. URL https://doi.org/10.22331/q-2019-07-12-163
- DOI 10.1145/3313276.3316366. URL https://doi.org/10.1145/3313276.3316366
- DOI 10.48550/arXiv.2302.14324
- DOI 10.1103/PRXQuantum.2.040203. URL https://link.aps.org/doi/10.1103/PRXQuantum.2.040203
- DOI 10.1145/3313276.3316310. URL https://doi.org/10.1145/3313276.3316310
- DOI 10.1145/3357713.3384314. URL https://doi.org/10.1145/3357713.3384314
- DOI 10.48550/arXiv.1811.04909
- DOI 10.1103/PhysRevLett.127.060503. URL https://link.aps.org/doi/10.1103/PhysRevLett.127.060503
- DOI 10.48550/arXiv.2303.01492
- DOI 10.1145/3519935.3519991. URL https://doi.org/10.1145/3519935.3519991
- DOI 10.48550/arXiv.2303.13012
- DOI 10.1103/PhysRevLett.110.250504. URL https://link.aps.org/doi/10.1103/PhysRevLett.110.250504
- DOI 10.1007/s00220-017-3002-y. URL https://doi.org/10.1007/s00220-017-3002-y
- DOI 10.1007/s00220-020-03699-z. URL https://doi.org/10.1007/s00220-020-03699-z
- DOI 10.22331/q-2021-11-10-574. URL https://doi.org/10.22331/q-2021-11-10-574
- DOI 10.1073/pnas.2026805118
- DOI 10.48550/arXiv.1111.4144. URL http://arxiv.org/abs/1111.4144. ArXiv:1111.4144 [cs]
- URL https://books.google.de/books?id=8ofqngEACAAJ
- K. Huebner, The Finite Element Method for Engineers. Wiley-Interscience publication (Wiley, 1975). URL https://books.google.de/books?id=pRkZAQAAIAAJ
- DOI 10.17973/MMSJ.2021˙11˙2021168
- DOI 10.3389/fmtec.2022.1021029. URL https://www.frontiersin.org/articles/10.3389/fmtec.2022.1021029
- DOI 10.1016/j.procir.2014.03.023
- DOI 10.1007/s00170-019-03585-6
- DOI 10.1016/j.cirp.2012.03.144
- DOI 10.3390/app10248779
- DOI 10.3390/jmmp4030078
- DOI 10.1016/j.cirp.2010.03.057
- DOI 10.1016/j.procir.2020.03.092
- S. Maslo, Aachen: Apprimus Verlag 1st ed. (2022)
- DOI 10.1038/s42254-021-00314-5. URL https://doi.org/10.1038/s42254-021-00314-5
- DOI 10.1038/s41586-019-0980-2. URL https://doi.org/10.1038/s41586-019-0980-2
- DOI 10.1038/s41534-023-00710-y. URL https://doi.org/10.1038/s41534-023-00710-y
- URL https://arxiv.org/abs/2010.03409
- Wolfgang Maass (30 papers)
- Ankit Agrawal (47 papers)
- Alessandro Ciani (17 papers)
- Sven Danz (6 papers)
- Alejandro Delgadillo (1 paper)
- Philipp Ganser (2 papers)
- Pascal Kienast (3 papers)
- Marco Kulig (1 paper)
- Valentina König (1 paper)
- Nil Rodellas-Gràcia (1 paper)
- Rivan Rughubar (1 paper)
- Stefan Schröder (12 papers)
- Marc Stautner (1 paper)
- Hannah Stein (1 paper)
- Tobias Stollenwerk (23 papers)
- Daniel Zeuch (7 papers)
- Frank K. Wilhelm (77 papers)