Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Division Algebra Representation of $E_7$ (2401.10534v1)

Published 19 Jan 2024 in math.GR, hep-th, math-ph, and math.MP

Abstract: We decompose the Lie algebra $\mathfrak{e}{8(-24)}$ into representations of $\mathfrak{e}{7(-25)}\oplus\mathfrak{sl}(2,\mathbb{R})$ using our recent description of $\mathfrak{e}_8$ in terms of (generalized) $3\times3$ matrices over pairs of division algebras. Freudenthal's description of both $\mathfrak{e}_7$ and its minimal representation are therefore realized explicitly within $\mathfrak{e}_8$, with the action given by the (generalized) matrix commutator in $\mathfrak{e}_8$, and with a natural parameterization using division algebras. Along the way, we show how to implement standard operations on the Albert algebra such as trace of the Jordan product, the Freudenthal product, and the determinant, all using commutators in $\mathfrak{e}_8$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Hans Freudenthal. Lie Groups in the Foundations of Geometry. Adv. Math., 1:145–190, 1964.
  2. Jacques Tits. Algèbres Alternatives, Algèbres de Jordan et Algèbres de Lie Exceptionnelles. Indag. Math., 28:223–237, 1966.
  3. A. Sudbery. Division Algebras, (Pseudo)Orthogonal Groups and Spinors. J. Phys., A17:939–955, 1984.
  4. C. H. Barton and A. Sudbery. Magic Squares and Matrix Models of Lie Algebras. Adv. Math., 180:596–647, 2003.
  5. Finite Lorentz Transformations, Automorphisms, and Division Algebras. J. Math. Phys., 34:3746–3767, 1993.
  6. Octonionic Cayley spinors and E6subscript𝐸6{E}_{6}italic_E start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT. Comment. Math. Univ. Carolin., 51:193–207, 2010.
  7. Octonions, E6subscript𝐸6{E}_{6}italic_E start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT, and Particle Physics. J. Phys.: Conference Series, 254:012005, 2010.
  8. Aaron Wangberg. The Structure of E6subscript𝐸6{E}_{6}italic_E start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT. PhD thesis, Oregon State University, 2007. Available at http://ir.library.oregonstate.edu/xmlui/handle/1957/7446.
  9. Discovering Real Lie Subalgebras of 𝔢6subscript𝔢6\mathfrak{e}_{6}fraktur_e start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT using Cartan Decompositions. J. Math. Phys., 54:081703, 2013.
  10. E6subscript𝐸6{E}_{6}italic_E start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT, the Group: The structure of SL⁢(3,𝕆)SL3𝕆\text{SL}(3,{\mathbb{O}})SL ( 3 , blackboard_O ). J. Algebra Appl., 14:1550091, 2015.
  11. A Symplectic Representation of E7subscript𝐸7{E}_{7}italic_E start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT. Comment. Math. Univ. Carolin., 55:387–399, 2014.
  12. Joshua James Kincaid. Division Algebra Representations of 𝑆𝑂⁢(4,2)𝑆𝑂42\text{SO}(4,2)SO ( 4 , 2 ). Master’s thesis, Oregon State University, 2012. Available at http://ir.library.oregonstate.edu/xmlui/handle/1957/30682.
  13. Division Algebra Representations of SO⁢(4,2)SO42\text{SO}(4,2)SO ( 4 , 2 ). Mod. Phys. Lett, A29:1450128, 2014.
  14. The 2×2222\times 22 × 2 Lie group magic square. Lett. Math. Phys., 104:1445–1468, 2014.
  15. An octonionic construction of E8subscript𝐸8{E}_{8}italic_E start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT and the Lie algebra magic square. Innov. Incidence Geom., 20:611–634, 2023.
  16. Octions: An E8subscript𝐸8{E}_{8}italic_E start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT description of the standard model. J. Math. Phys, 63:081703, 2022.
  17. E. B. Vinberg. A construction of exceptional Lie groups (Russian). Tr. Semin. Vektorn. Tensorn. Anal., 13:7–9, 1966.
  18. A new division algebra representation of E6subscript𝐸6{E}_{6}italic_E start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT. J. Math. Phys., (submitted). https://arXiv.org/abs/2309.00078.
  19. Hans Freudenthal. Beziehungen der E7subscript𝐸7{E}_{7}italic_E start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT und E8subscript𝐸8{E}_{8}italic_E start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT zur oktavenebene, I. Proc. Kon. Ned. Akad. Wet., A57:218–230, 1954.
  20. M. Günaydin and F. Gürsey. Quark statistics and octonions. Phys. Rev., D9:3387–3391, 1974.
  21. A universal gauge theory model based on e6subscript𝑒6e_{6}italic_e start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT. Phys. Lett., B60:177–180, 1976.
  22. I. Bars and M. Günaydin. Grand unification with the exceptional group E8subscript𝐸8{E}_{8}italic_E start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT. Phys. Rev. Lett., 45:859–862, 1980.
  23. A. Garrett Lisi. An exceptionally simple theory of everything. https://arXiv.org/abs/0711.0770, 2007.
  24. Beyond the standard model with six-dimensional spacetime. Particles, 6:144–172, 2023.
  25. Construction of Lie algebras and Lie superalgebras from ternary algebras. J. Math. Phys., 20:1977–1993, 1979.
  26. M. Gn̈aydin. Vertex operator construction of nonassociative algebras and their affinizations. J. Math. Phys., 30:937–942, 1989.
  27. L. Kantor. Some generalizations of Jordan algebras. Trudy Sem. Vektor. Tenzor. Anal., 16:407–499, 1972. (in Russian).
  28. L. Kantor. Models of exceptional Lie algebras. Sov. Math. Dokl., 14:254–258, 1973.
  29. M. Günaydin and S. J. Hyun. Affine exceptional Jordan algebra and vertex operators. Phys. Lett., B209:498–502, 1988.
  30. The Exceptional Jordan Eigenvalue Problem. Internat. J. Theoret. Phys., 38:2901–2916, 1999.
Citations (3)

Summary

We haven't generated a summary for this paper yet.