Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some coefficient estimates on complex valued kernel $α$-harmonic mappings (2401.10434v1)

Published 19 Jan 2024 in math.CV

Abstract: We call a kind of mappings induced by a kind of weighted Laplace operator as complex valued kernel $\alpha$-harmonic mappings. In this article, for this class of mappings, the Heinz type lemma is established, and the best Heinz type inequality is obtained. Next, the extremal function of Schwartz's Lemma is discussed. Finally, the coefficients are estimated for the subclass of complex valued kernel alpha harmonic mappings whose coefficients are real numbers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Z. Abdulhadi and Y. Abu Muhanna. Landau’s theorem for biharmonic mappings. J. Math. Anal. Appl., 338(1):705–709, 2008.
  2. Criteria of univalence and fully α𝛼\alphaitalic_α-accessibility for p𝑝pitalic_p-harmonic and p𝑝pitalic_p-analytic functions. Complex Var. Elliptic Equ., 62(8):1165–1183, 2017.
  3. Special functions, volume 71 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1999.
  4. Harmonic typically real mappings. Math. Proc. Cambridge Philos. Soc., 119(4):673–680, 1996.
  5. M. Carlsson and J. Wittsten. The Dirichlet problem for standard weighted Laplacians in the upper half plane. J. Math. Anal. Appl., 436(2):868–889, 2016.
  6. Coefficient estimates and radii problems for certain classes of polyharmonic mappings. Complex Var. Elliptic Equ., 60(3):354–371, 2015.
  7. Bloch constant and Landau’s theorem for planar p𝑝pitalic_p-harmonic mappings. J. Math. Anal. Appl., 373(1):102–110, 2011.
  8. S. Chen and M. Vuorinen. Some properties of a class of elliptic partial differential operators. J. Math. Anal. Appl., 431(2):1124–1137, 2015.
  9. X. Chen and D. Kalaj. A representation theorem for standard weighted harmonic mappings with an integer exponent and its applications. J. Math. Anal. Appl., 444(2):1233–1241, 2016.
  10. Typically real harmonic functions. Rocky Mountain J. Math., 42(2):567–581, 2012.
  11. P. Duren. Harmonic mappings in the plane, volume 156 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2004.
  12. The argument principle for harmonic functions. Amer. Math. Monthly, 103(5):411–415, 1996.
  13. P. Li and S. Ponnusamy. Lipschitz continuity of quasiconformal mappings and of the solutions to second order elliptic PDE with respect to the distance ratio metric. Complex Anal. Oper. Theory, 12(8):1991–2001, 2018.
  14. Some properties of planar p𝑝pitalic_p-harmonic and log-p𝑝pitalic_p-harmonic mappings. Bull. Malays. Math. Sci. Soc. (2), 36(3):595–609, 2013.
  15. P. Li and X. Wang. Lipschitz continuity of α𝛼\alphaitalic_α-harmonic functions. Hokkaido Math. J., 48(1):85–97, 2019.
  16. Several properties of α𝛼\alphaitalic_α-harmonic functions in the unit disk. Monatsh. Math., 184(4):627–640, 2017.
  17. M. Liu. Landau’s theorem for planar harmonic mappings. Comput. Math. Appl., 57(7):1142–1146, 2009.
  18. B. Long and Q. Wang. Some geometric properties of complex-valued kernel α𝛼\alphaitalic_α-harmonic mappings. Bull. Malays. Math. Sci. Soc., 44(4):2381–2399, 2021.
  19. B. Long and Q. Wang. Starlikeness, convexity and Landau type theorem of the real kernel α𝛼\alphaitalic_α-harmonic mappings. Filomat, 35(8):2629–2644, 2021.
  20. A. Olofsson. Differential operators for a scale of Poisson type kernels in the unit disc. J. Anal. Math., 123:227–249, 2014.
  21. A. Olofsson. Lipschitz continuity for weighted harmonic functions in the unit disc. Complex Var. Elliptic Equ., 65(10):1630–1660, 2020.
  22. A. Olofsson and J. Wittsten. Poisson integrals for standard weighted Laplacians in the unit disc. J. Math. Soc. Japan, 65(2):447–486, 2013.
  23. M. Pavlović. Decompositions of Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT and Hardy spaces of polyharmonic functions. J. Math. Anal. Appl., 216(2):499–509, 1997.
  24. J. Qiao. Univalent harmonic and biharmonic mappings with integer coefficients in complex quadratic fields. Bull. Malays. Math. Sci. Soc., 39(4):1637–1646, 2016.
  25. On harmonic typically real mappings. J. Math. Anal. Appl., 277(2):533–554, 2003.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com