Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inverse Problem Approach to Aberration Correction for in vivo Transcranial Imaging Based on a Sparse Representation of Contrast-enhanced Ultrasound Data (2401.10389v2)

Published 18 Jan 2024 in eess.IV and physics.med-ph

Abstract: Transcranial ultrasound imaging is currently limited by attenuation and aberration induced by the skull. First used in contrast-enhanced ultrasound (CEUS), highly echoic microbubbles allowed for the development of novel imaging modalities such as ultrasound localization microscopy (ULM). Herein, we develop an inverse problem approach to aberration correction (IPAC) that leverages the sparsity of microbubble signals. We propose to use the \textit{a priori} knowledge of the medium based upon microbubble localization and wave propagation to build a forward model to link the measured signals directly to the aberration function. A standard least-squares inversion is then used to retrieve the aberration function. We first validated IPAC on simulated data of a vascular network using plane wave as well as divergent wave emissions. We then evaluated the reproducibility of IPAC \textit{in vivo} in 5 mouse brains. We showed that aberration correction improved the contrast of CEUS images by 4.6 dB. For ULM images, IPAC yielded sharper vessels, reduced vessel duplications, and improved the resolution from 21.1 $\mu$m to 18.3 $\mu$m. Aberration correction also improved hemodynamic quantification for velocity magnitude and flow direction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. C. Iadecola, Neuron 96, 17 (2017).
  2. G. Montaldo, M. Tanter, and M. Fink, The Journal of the Acoustical Society of America 115, 768 (2004).
  3. M. Anderson, M. McKeag, and G. Trahey, The Journal of the Acoustical Society of America 107, 3540 (2000).
  4. R. Mallart and M. Fink, The Journal of the Acoustical Society of America 96, 3721 (1994).
  5. S.-E. Måsøy, T. Varslot, and B. Angelsen, The Journal of the Acoustical Society of America 117, 450 (2005).
  6. G. Montaldo, M. Tanter, and M. Fink, Physical review letters 106, 054301 (2011).
  7. H. Bendjador, T. Deffieux, and M. Tanter, IEEE transactions on medical imaging 39, 3100 (2020).
  8. D. Garcia, Computer Methods and Programs in Biomedicine , 106726 (2022).
  9. M. Tanter, J.-L. Thomas, and M. Fink, The Journal of the Acoustical Society of America 108, 223 (2000).
  10. A. N. Tihonov, Soviet Math. 4, 1035 (1963).
  11. L. Reichel and Q. Ye, Electronic Transactions on Numerical Analysis 33, 63 (2009).
  12. J. J. Stickel, Computers & chemical engineering 34, 467 (2010).
  13. I. Selesnick, Connexions 4 (2013).
  14. D. Garcia, Computational statistics & data analysis 54, 1167 (2010).
  15. H. Akima, Journal of the ACM (JACM) 17, 589 (1970).

Summary

We haven't generated a summary for this paper yet.