Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PAC Code Rate-Profile Design Using Search-Constrained Optimization Algorithms (2401.10376v1)

Published 18 Jan 2024 in cs.IT and math.IT

Abstract: In this paper, we introduce a novel rate-profile design based on search-constrained optimization techniques to assess the performance of polarization-adjusted convolutional (PAC) codes under Fano (sequential) decoding. The results demonstrate that the resulting PAC code offers much reduced computational complexity compared to a construction based on a conventional genetic algorithm without a performance loss in error-correction performance. As the fitness function of our algorithm, we propose an adaptive successive cancellation list decoding algorithm to determine the weight distribution of the rate profiles. The simulation results indicate that, for a PAC(256, 128) code, only 8% of the population requires that their fitness function be evaluated with a large list size. This represents an improvement of almost 92% over a conventional evolutionary algorithm. For a PAC(64, 32) code, this improvement is about 99%. We also plotted the performance of the high-rate PAC(128, 105) and PAC(64, 51) codes, and the results show that they exhibit superior performance compared to other algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite blocklength regime,” IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2307–2359, 2010.
  2. E. Arıkan, “From sequential decoding to channel polarization and back again,” arXiv preprint arXiv:1908.09594, 2019.
  3. M. Moradi, A. Mozammel, K. Qin, and E. Arıkan, “Performance and complexity of sequential decoding of PAC codes,” arXiv preprint arXiv:2012.04990, 2020.
  4. R. Fano, “A heuristic discussion of probabilistic decoding,” IEEE Transactions on Information Theory, vol. 9, no. 2, pp. 64–74, 1963.
  5. I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions on Information Theory, vol. 61, no. 5, pp. 2213–2226, 2015.
  6. B. Li, H. Zhang, and J. Gu, “On pre-transformed polar codes,” arXiv preprint arXiv:1912.06359, 2019.
  7. M. Moradi, “Polarization-adjusted convolutional (PAC) codes as a concatenation of inner cyclic and outer polar-and Reed-Muller-like codes,” Finite Fields and Their Applications, vol. 93, p. 102321, 2024.
  8. H. Yao, A. Fazeli, and A. Vardy, “A deterministic algorithm for computing the weight distribution of polar code,” IEEE Transactions on Information Theory, 2023.
  9. M. Moradi, “Application of guessing to sequential decoding of polarization-adjusted convolutional (PAC) codes,” IEEE Transactions on Communications, 2023.
  10. T. Tonnellier and W. J. Gross, “On systematic polarization-adjusted convolutional (PAC) codes,” IEEE Communications Letters, vol. 25, no. 7, pp. 2128–2132, 2021.
  11. M. Moradi and A. Mozammel, “A Monte-Carlo based construction of polarization-adjusted convolutional (PAC) codes,” arXiv preprint arXiv:2106.08118, 2021.
  12. W. Liu, L. Chen, and X. Liu, “A weighted sum based construction of PAC codes,” IEEE Communications Letters, 2022.
  13. E. Arıkan, “Channel combining and splitting for cutoff rate improvement,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 628–639, 2006.
  14. M. Moradi, “On sequential decoding metric function of polarization-adjusted convolutional (PAC) codes,” IEEE Transactions on Communications, vol. 69, no. 12, pp. 7913–7922, 2021.
  15. E. Arıkan, “An inequality on guessing and its application to sequential decoding,” IEEE Transactions on Information Theory, vol. 42, no. 1, pp. 99–105, 1996.
  16. B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check,” IEEE communications letters, vol. 16, no. 12, pp. 2044–2047, 2012.
  17. H. Yao, A. Fazeli, and A. Vardy, “List decoding of arıkan’s PAC codes,” Entropy, vol. 23, no. 7, p. 841, 2021.
  18. A. Elkelesh, M. Ebada, S. Cammerer, and S. Ten Brink, “Decoder-tailored polar code design using the genetic algorithm,” IEEE Transactions on Communications, vol. 67, no. 7, pp. 4521–4534, 2019.
  19. S. K. Mishra, D. Katyal, and S. A. Ganapathi, “A modified Q-learning algorithm for rate-profiling of polarization adjusted convolutional (PAC) codes,” 2022 IEEE Wireless Communications and Networking Conference (WCNC), pp. 2363–2368, 2022.
  20. A. Solomon, K. R. Duffy, and M. Médard, “Soft maximum likelihood decoding using grand,” in ICC 2020-2020 IEEE International Conference on Communications (ICC).   IEEE, 2020, pp. 1–6.
  21. W. An, M. Médard, and K. R. Duffy, “Crc codes as error correction codes,” in ICC 2021-IEEE International Conference on Communications.   IEEE, 2021, pp. 1–6.
Citations (1)

Summary

We haven't generated a summary for this paper yet.