Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HRL-TSCH: A Hierarchical Reinforcement Learning-based TSCH Scheduler for IIoT (2401.10368v2)

Published 18 Jan 2024 in cs.NI

Abstract: The Industrial Internet of Things (IIoT) demands adaptable Networked Embedded Systems (NES) for optimal performance. Combined with recent advances in AI, tailored solutions can be developed to meet specific application requirements. This study introduces HRL-TSCH, an approach rooted in Hierarchical Reinforcement Learning (HRL), to devise Time Slotted Channel Hopping (TSCH) schedules provisioning IIoT demand. HRL-TSCH employs dual policies: one at a higher level for TSCH schedule link management, and another at a lower level for timeslot and channel assignments. The proposed RL agents address a multi-objective problem, optimizing throughput, power efficiency, and network delay based on predefined application requirements. Simulation experiments demonstrate HRL-TSCH superiority over existing state-of-art approaches, effectively achieving an optimal balance between throughput, power consumption, and delay, thereby enhancing IIoT network performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com