Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A dual-species Rydberg array (2401.10325v1)

Published 18 Jan 2024 in quant-ph and physics.atom-ph

Abstract: Rydberg atom arrays have emerged as a leading platform for quantum information science. Reaching system sizes of hundreds of long-lived qubits, these arrays are used for highly coherent analog quantum simulation, as well as digital quantum computation. Advanced quantum protocols such as quantum error correction, however, require midcircuit qubit operations, including the replenishment, reset, and readout of a subset of qubits. A compelling strategy to achieve these capabilities is a dual-species architecture in which a second atomic species can be controlled without crosstalk, and entangled with the first via Rydberg interactions. Here, we realize a dual-species Rydberg array consisting of rubidium (Rb) and cesium (Cs) atoms, and explore new regimes of interactions and dynamics not accessible in single-species architectures. We achieve enhanced interspecies interactions by electrically tuning the Rydberg states close to a Forster resonance. In this regime, we demonstrate interspecies Rydberg blockade and implement quantum state transfer from one species to another. We then generate a Bell state between Rb and Cs hyperfine qubits via an interspecies controlled-phase gate. Finally, we combine interspecies entanglement with native midcircuit readout to achieve quantum non-demolition measurement of a Rb qubit using an auxiliary Cs qubit. The techniques demonstrated here pave the way toward scalable measurement-based protocols and real-time feedback control in large-scale quantum systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. A. Browaeys and T. Lahaye, Many-body physics with individually controlled Rydberg atoms, Nat. Phys. 16, 132 (2020).
  2. A. M. Kaufman and K.-K. Ni, Quantum science with optical tweezer arrays of ultracold atoms and molecules, Nat. Phys. 17, 1324 (2021).
  3. B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87, 307 (2015).
  4. F. Cesa and H. Pichler, Universal quantum computation in globally driven Rydberg atom arrays, Phys. Rev. Lett. 131, 170601 (2023).
  5. N. Chepiga, Tunable quantum criticality in multi-component Rydberg arrays, arXiv:2308.12838  (2023).
  6. K. McDonnell, L. Keary, and J. Pritchard, Demonstration of a quantum gate using electromagnetically induced transparency, Phys. Rev. Lett. 129, 200501 (2022).
  7. A. Browaeys, D. Barredo, and T. Lahaye, Experimental investigations of dipole–dipole interactions between a few Rydberg atoms, J. Phys. B: At. Mol. Opt. Phys. 49, 152001 (2016).
  8. D. Comparat and P. Pillet, Dipole blockade in a cold Rydberg atomic sample, JOSA B 27, A208 (2010).
  9. M. Endo and T. R. Schibli, Residual phase noise suppression for Pound-Drever-Hall cavity stabilization with an electro-optic modulator, OSA Continuum 1, 116 (2018).
  10. S. Jandura and G. Pupillo, Time-optimal two-and three-qubit gates for Rydberg atoms, Quantum 6, 712 (2022).
  11. J. Thorpe, K. Numata, and J. Livas, Laser frequency stabilization and control through offset sideband locking to optical cavities, Opt. Express 16, 15980 (2008).
  12. J. R. Johansson, P. D. Nation, and F. Nori, QuTiP 2: A Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 184, 1234 (2013).
  13. D. A. Steck, Rubidium87 D line data, http://steck.us/alkalidata  (2001).
  14. D. A. Steck, Cesium D line data, http://steck.us/alkalidata  (2003).
Citations (19)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com