Interaction quench of dipolar bosons in a one-dimensional optical lattice (2401.10317v2)
Abstract: A Tonks-Girardeau (TG) gas is a highly correlated quantum state of strongly interacting bosons confined to one dimension, where repulsive interactions make the particles behave like impenetrable fermions. By suddenly tuning these interactions to the attractive regime, it is possible to realize a super-Tonks-Girardeau (sTG) gas -- a highly excited, metastable state of strongly attractive bosons with unique stability properties. Inspired by the sTG quench scenario, we investigate a similar setup but with the inclusion of long-range dipolar interactions, which modify the system away from the TG Mott insulating limit. We simulate an interaction quench on dipolar bosons initially prepared in various states and fillings, using real-space densities, orbital occupations, Glauber correlation functions, and autocorrelation functions to probe post-quench stability. Our results reveal that stability is maintained only at very weak dipolar interaction strengths when starting from a unit-filled TG Mott state. In contrast, all cluster states -- whether unit-filled or doubly-filled -- eventually collapse under attractive interactions. This collapse is not always visible in the density profile but becomes apparent in the autocorrelation function, indicating complex many-body restructuring of the quantum state. Our findings underscore the potential of dipolar interactions to drive novel quantum dynamics and highlight the delicate balance required to stabilize excited states in long-range interacting systems.
- J. H. J.-N. S. M. W. H. P. B. T. L. . T. P. Mingyang Guo, Fabian Böttcher, The low-energy goldstone mode in a trapped dipolar supersolid, Nature 574, 386 (2019).
- A. Recati and S. Stringari, Supersolidity in ultracold dipolar gases, Nature Review Physics 5, 735 (2023).
- C. A. Bracamontes, J. Maslek, and J. V. Porto, Realization of a floquet-engineered moat band for ultracold atoms, Phys. Rev. Lett. 128, 213401 (2022).
- E. Tempfli, S. Zöllner, and P. Schmelcher, Excitations of attractive 1d bosons: binding versus fermionization, New Journal of Physics 10, 103021 (2008).
- L. Tonks, The complete equation of state of one, two and three-dimensional gases of hard elastic spheres, Physical Review 50, 955 (1936).
- M. D. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension, Journal of Mathematical Physics 1, 516 (1960).
- M. D. Girardeau, Permutation symmetry of many-particle wave functions, Phys. Rev. 139, B500 (1965).
- M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett. 81, 938 (1998).
- D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Regimes of quantum degeneracy in trapped 1d gases, Phys. Rev. Lett. 85, 3745 (2000).
- T. Kinoshita, T. Wenger, and D. S. Weiss, Observation of a one-dimensional tonks-girardeau gas, Science 305, 1125 (2004).
- G. E. Astrakharchik and Y. E. Lozovik, Super-tonks-girardeau regime in trapped one-dimensional dipolar gases, Phys. Rev. A 77, 013404 (2008).
- L. Guan and S. Chen, Super-tonks-girardeau gas of spin 1/2 interacting fermionsground-state properties of a one-dimensional system of hard rods, Phys. Rev. Lett. 105, 175301 (2010).
- Y. Chen and X. Cui, Ultrastable super-tonks-girardeau gases under weak dipolar interactions, Phys. Rev. Lett. 131, 203002 (2023).
- A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, General variational many-body theory with complete self-consistency for trapped bosonic systems, Phys. Rev. A 73, 063626 (2006).
- A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Role of excited states in the splitting of a trapped interacting bose-einstein condensate by a time-dependent barrier, Phys. Rev. Lett. 99, 030402 (2007).
- O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Unified view on multiconfigurational time propagation for systems consisting of identical particles, J. Chem. Phys. 127, 154103 (2007).
- O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Multiconfigurational time-dependent hartree method for bosons: Many-body dynamics of bosonic systems, Phys. Rev. A 77, 033613 (2008).
- A. U. J. Lode, Multiconfigurational time-dependent hartree method for bosons with internal degrees of freedom: Theory and composite fragmentation of multicomponent bose-einstein condensates, Phys. Rev. A 93, 063601 (2016).
- T. G. Tim Langen and J. Schmiedmayer, Prethermalization and universal dynamics in near-integrable quantum systems, Journal of Statistical Mechanics: Theory and Experiment , 064009 (2016).
- K. Mallayya, M. Rigol, and W. D. Roeck, Prethermalization and thermalization in isolated quantum systems, Phys. Rev. X 9, 021027 (2019).
- T. Bergeman, M. G. Moore, and M. Olshanii, Atom-atom scattering under cylindrical harmonic confinement: Numerical and analytic studies of the confinement induced resonance, Phys. Rev. Lett. 91, 163201 (2003).
- J. I. Kim, J. Schmiedmayer, and P. Schmelcher, Quantum scattering in quasi-one-dimensional cylindrical confinement, Phys. Rev. A 72, 042711 (2005).
- V. A. Yurovsky, Feshbach resonance scattering under cylindrical harmonic confinement, Phys. Rev. A 71, 012709 (2005).
- V. S. Melezhik, J. Kim, and P. Schmelcher, Wave-packet dynamical analysis of ultracold scattering in cylindrical waveguides, Phys. Rev. A 76, 053611 (2007).
- S. Saeidian, V. Melezhik, and P. Schmelcher, Multichannel atomic scattering and confinement-induced resonances in waveguides, Phys. Rev. A 77, 042721 (2008).
- G.P.Berman, F. Borgonovi, and F. M. Izrailev, Irregular dynamics in a one-dimensional bose system, Phys. Rev. Lett. 92, 030404 (2004).
- Z. X. Gong and L. M. Duan, Prethermalization and dynamic phase transition in an isolated trapped ion spin chain, New J. Phys. 15, 113051 (2013).
- V. K. B. Kota and R. Sahu, Single-particle entropy in (1+2)-body random matrix ensembles, Phys. Rev. E 66, 037103 (2002).
- S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars and hilbert space fragmentation: a review of exact results, Rep. Prog. Phys. 85, 086501 (2022).
- N. Yonezawa, A. Tanaka, and T. Cheon, Quantum holonomy in the lieb-liniger model, Phys. Rev. A 87, 062113 (2013).
- K. Sim, R. Chitra, and P. Molignini, Quench dynamics and scaling laws in topological nodal loop semimetals, Phys. Rev. B 106, 224302 (2022).
- P. Kramer and M. Saraceno, Geometry of the Time-Dependent Variational Principle in Quantum Mechanics, Lecture Notes in Physics, Vol. 140 (Springer, 1981).
- S. Kvaal, Variational formulations of the coupled-cluster method in quantum chemistry, Molecular Physics 111, 1100 (2013).
- A. McLachlan, A variational solution of the time-dependent schrodinger equation, Molecular Physics 8, 39 (1964).
- S. H. J. S. A. Griesmaier, J. Werner and T. Pfau, Bose-einstein condensation of chromium, Phys. Rev. Lett. 94, 160401 (2005).