Beyond the Frame: Single and mutilple video summarization method with user-defined length (2401.10254v1)
Abstract: Video smmarization is a crucial method to reduce the time of videos which reduces the spent time to watch/review a long video. This apporach has became more important as the amount of publisehed video is increasing everyday. A single or multiple videos can be summarized into a relatively short video using various of techniques from multimodal audio-visual techniques, to natural language processing approaches. Audiovisual techniques may be used to recognize significant visual events and pick the most important parts, while NLP techniques can be used to evaluate the audio transcript and extract the main sentences (timestamps) and corresponding video frames from the original video. Another approach is to use the best of both domain. Meaning that we can use audio-visual cues as well as video transcript to extract and summarize the video. In this paper, we combine a variety of NLP techniques (extractive and contect-based summarizers) with video processing techniques to convert a long video into a single relatively short video. We design this toll in a way that user can specify the relative length of the summarized video. We have also explored ways of summarizing and concatenating multiple videos into a single short video which will help having most important concepts from the same subject in a single short video. Out approach shows that video summarizing is a difficult but significant work, with substantial potential for further research and development, and it is possible thanks to the development of NLP models.
- D. DeMenthon, V. Kobla, and D. Doermann, “Video summarization by curve simplification,” in Proceedings of the sixth ACM international conference on Multimedia, 1998, pp. 211–218.
- L. He, E. Sanocki, A. Gupta, and J. Grudin, “Auto-summarization of audio-video presentations,” in Proceedings of the seventh ACM international conference on Multimedia (Part 1), 1999, pp. 489–498.
- L. Yuan, F. E. H. Tay, P. Li, and J. Feng, “Unsupervised video summarization with cycle-consistent adversarial lstm networks,” IEEE Transactions on Multimedia, vol. 22, no. 10, pp. 2711–2722, 2019.
- Z. Ji, K. Xiong, Y. Pang, and X. Li, “Video summarization with attention-based encoder–decoder networks,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 6, pp. 1709–1717, 2019.
- C. Guntuboina, A. Porwal, P. Jain, and H. Shingrakhia, “Video summarization for multiple sports using deep learning,” in Proceedings of the International e-Conference on Intelligent Systems and Signal Processing: e-ISSP 2020. Springer, 2022, pp. 643–656.
- M. Ajmal, M. H. Ashraf, M. Shakir, Y. Abbas, and F. A. Shah, “Video summarization: Techniques and classification.” in ICCVG, 2012, pp. 1–13.
- U. N. Yoon, M. D. Hong, and G.-S. Jo, “Unsupervised video summarization based on deep reinforcement learning with interpolation,” Sensors, vol. 23, no. 7, p. 3384, 2023.
- A. E. Dirik, J. Lai, and M. Topkara, “Automatic static video summarization,” Apr. 1 2014, uS Patent 8,687,941.
- S. Chakraborty, O. Tickoo, and R. Iyer, “Adaptive keyframe selection for video summarization,” in 2015 IEEE winter conference on applications of computer vision. IEEE, 2015, pp. 702–709.
- M. Guironnet, D. Pellerin, N. Guyader, and P. Ladret, “Video summarization based on camera motion and a subjective evaluation method,” EURASIP Journal on Image and Video Processing, vol. 2007, pp. 1–12, 2007.
- N. Nazari and M. Mahdavi, “A survey on automatic text summarization,” Journal of AI and Data Mining, vol. 7, no. 1, pp. 121–135, 2019.
- D. Yadav, J. Desai, and A. K. Yadav, “Automatic text summarization methods: A comprehensive review,” arXiv preprint arXiv:2204.01849, 2022.
- A. Nagy, B. Bial, and J. Ács, “Automatic punctuation restoration with bert models,” arXiv preprint arXiv:2101.07343, 2021.
- H. Zhang, J. Xu, and J. Wang, “Pretraining-based natural language generation for text summarization,” arXiv preprint arXiv:1902.09243, 2019.
- S. Tomar, “Converting video formats with ffmpeg,” Linux journal, vol. 2006, no. 146, p. 10, 2006.
- Z. Xia, P. Yi, Y. Liu, B. Jiang, W. Wang, and T. Zhu, “Genpass: A multi-source deep learning model for password guessing,” IEEE Transactions on Multimedia, vol. 22, pp. 1323–1332, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:203186587
- Y. Pan, S. Li, Y. Zhang, and T. Zhu, “Cda: Coordinating data dissemination and aggregation in heterogeneous iot networks using ctc,” J. Netw. Comput. Appl., vol. 171, p. 102797, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:225252122
- W. Wang, T. Xie, X. Liu, and T. Zhu, “Ect: Exploiting cross-technology concurrent transmission for reducing packet delivery delay in iot networks,” IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, pp. 369–377, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:52963794
- W. Wang, X. Liu, Y. Yao, Y. Pan, Z. Chi, and T. Zhu, “Crf: Coexistent routing and flooding using wifi packets in heterogeneous iot networks,” IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pp. 19–27, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:86513247
- Z. Chi, Y. Li, H. Sun, Y. Yao, Z. Lu, and T. Zhu, “B2w2: N-way concurrent communication for iot devices,” Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:8208501
- Z. Chi, Z. Huang, Y. Yao, T. Xie, H. Sun, and T. Zhu, “Emf: Embedding multiple flows of information in existing traffic for concurrent communication among heterogeneous iot devices,” IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, pp. 1–9, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:958378
- Z. Chi, Y. Li, X. Liu, Y. Yao, Y. Zhang, and T. Zhu, “Parallel inclusive communication for connecting heterogeneous iot devices at the edge,” Proceedings of the 17th Conference on Embedded Networked Sensor Systems, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:207907186
- Z. Chi, Y. Yao, T. Xie, X. Liu, Z. Huang, W. Wang, and T. Zhu, “Ear: Exploiting uncontrollable ambient rf signals in heterogeneous networks for gesture recognition,” Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:53092538
- Z. Chi, Y. Li, Y. Yao, and T. Zhu, “Pmc: Parallel multi-protocol communication to heterogeneous iot radios within a single wifi channel,” 2017 IEEE 25th International Conference on Network Protocols (ICNP), pp. 1–10, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:20261532
- D. P. Khatri, G. Song, and T.-L. Zhu, “Heterogeneous computing systems,” ArXiv, vol. abs/2212.14418, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:255341042
- Y. Li, Z. Chi, X. Liu, and T. Zhu, “Chiron: Concurrent high throughput communication for iot devices,” Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:49668907
- Z. Chi, Y. Li, H. Sun, Y. Yao, and T. Zhu, “Concurrent cross-technology communication among heterogeneous iot devices,” IEEE/ACM Transactions on Networking, vol. 27, pp. 932–947, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:150300159
- Y. Pan, S. Li, B. Li, Y. Zhang, Z. Yang, B. Guo, and T. Zhu, “Cdd: Coordinating data dissemination in heterogeneous iot networks,” IEEE Communications Magazine, vol. 58, pp. 84–89, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:220605679
- W. Iqbal, W. Wang, and T. Zhu, “Machine learning and artificial intelligence in next-generation wireless network,” ArXiv, vol. abs/2202.01690, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:246485682
- D. Han, A. Li, L. Zhang, Y. Zhang, J. Li, T. Li, T. Zhu, and Y. Zhang, “Deep learning-guided jamming for cross-technology wireless networks: Attack and defense,” IEEE/ACM Transactions on Networking, vol. 29, pp. 1922–1932, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:236678111
- Z. Ning, H. N. Iradukunda, Q. Zhang, and T. Zhu, “Benchmarking machine learning: How fast can your algorithms go?” ArXiv, vol. abs/2101.03219, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:231573015
- W. Wang, E. Sallenback, Z. Ning, H. N. Iradukunda, W. Lu, Q. Zhang, and T. Zhu, “Mailleak: Obfuscation-robust character extraction using transfer learning,” 2021 IEEE/ACM Symposium on Edge Computing (SEC), pp. 459–464, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:229349006
- Q. Xie, Q. Zhang, X. Zhang, D. Tian, R. Wen, T. Zhu, P. Yi, and X. Li, “A context-centric chatbot for cryptocurrency using the bidirectional encoder representations from transformers neural networks,” 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:235996896
- S. Lola, R. Dhadvai, W. Wang, and T. Zhu, “Chatbot for fitness management using ibm watson,” ArXiv, vol. abs/2112.15167, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:245634752
- G. Song and T. Zhu, “Ml-based secure low-power communication in adversarial contexts,” ArXiv, vol. abs/2212.13689, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:255186145
- J. Xu, P. Yi, W. Wang, and T. Zhu, “A power storage station placement algorithm for power distribution based on electric vehicle,” International Journal of Distributed Sensor Networks, vol. 13, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:39936922
- S. Chandrasekaran, J. M. Reginald, W. Wang, and T. Zhu, “Computer vision based parking optimization system,” ArXiv, vol. abs/2201.00095, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:245650529
- X. Liu, W. Wang, G. Song, and T. Zhu, “Lightthief: Your optical communication information is stolen behind the wall,” in USENIX Security Symposium, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:260777714
- H. Gopal, G. Song, and T.-L. Zhu, “Security, privacy and challenges in microservices architecture and cloud computing- survey,” ArXiv, vol. abs/2212.14422, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:255340828
- W. Wang, Y. Yao, X. Liu, X. Li, P. Hao, and T. Zhu, “I can see the light: Attacks on autonomous vehicles using invisible lights,” Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:244077769
- Z. Zhou, X. Kuang, L. Sun, L. Zhong, and C. Xu, “Endogenous security defense against deductive attack: When artificial intelligence meets active defense for online service,” IEEE Communications Magazine, vol. 58, pp. 58–64, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:220606123
- Y. Pan, S. Li, J. L. Chang, Y. Yan, S. Xu, Y. An, and T. Zhu, “An unmanned aerial vehicle navigation mechanism with preserving privacy,” ICC 2019 - 2019 IEEE International Conference on Communications (ICC), pp. 1–6, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:198169333
- “2018 third international conference on security of smart cities, industrial control system and communications (ssic),” 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:240141684
- A. Li, J. Li, D. Han, Y. Zhang, T. Li, and T. Zhu, “Phyauth: Physical-layer message authentication for zigbee networks,” in USENIX Security Symposium, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:260340570
- E. Miller, N. Banerjee, and T. Zhu, “Smart homes that detect sneeze, cough, and face touching,” Smart Health (Amsterdam, Netherlands), vol. 19, pp. 100 170 – 100 170, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:230541358
- A. Gawade, A. Sanap, V. S. Baviskar, R. Jahnige, Q. Zhang, and T. Zhu, “Indoor air quality improvement,” ArXiv, vol. abs/2012.15387, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:229923861
- J. Gao, P. Yi, Z. Chi, and T. Zhu, “A smart medical system for dynamic closed-loop blood glucose-insulin control,” Smart Health, pp. 18–33, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:80388593
- J. Wang, Z. Huang, W. Zhang, A. Patil, K. Patil, T. Zhu, E. J. Shiroma, M. A. Schepps, and T. B. Harris, “2016 ieee international conference on big data (big data) wearable sensor based human posture recognition.” [Online]. Available: https://api.semanticscholar.org/CorpusID:10607990
- S. Li, P. Yi, Z. Huang, T. Xie, and T. Zhu, “Energy scheduling and allocation in electric vehicles energy internet,” 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1–5, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:26187112
- Y. Li and T. Zhu, “Using wi-fi signals to characterize human gait for identification and activity monitoring,” 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pp. 238–247, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:5049216
- J. Gao, P. Yi, Z. Chi, and T. Zhu, “Enhanced wearable medical systems for effective blood glucose control,” 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pp. 199–208, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:5049985
- Z. Huang and T. Zhu, “eair: an energy efficient air quality management system in residential buildings: poster abstract,” Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings, 2014. [Online]. Available: https://api.semanticscholar.org/CorpusID:117747
- W. Zhong, Z. Huang, T. Zhu, Y. J. Gu, Q. Zhang, P. Yi, D. Jiang, and S. Xiao, “ides: Incentive-driven distributed energy sharing in sustainable microgrids,” International Green Computing Conference, pp. 1–10, 2014. [Online]. Available: https://api.semanticscholar.org/CorpusID:11873749
- Y. Sui, P. Yi, X. Liu, and T. Zhu, “Energy transport station deployment in electric vehicles energy internet,” IEEE Access, vol. 7, pp. 97 986–97 995, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:198315553
- Y. Pan, B. K. Bhargava, Z. Ning, N. Slavov, S. Li, J. Liu, S. Xu, C. Li, and T. Zhu, “Safe and efficient uav navigation near an airport,” ICC 2019 - 2019 IEEE International Conference on Communications (ICC), pp. 1–6, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:198169074