Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimally truncated WKB approximation for the 1D stationary Schrödinger equation in the highly oscillatory regime (2401.10141v2)

Published 18 Jan 2024 in math.NA and cs.NA

Abstract: This paper is dedicated to the efficient numerical computation of solutions to the 1D stationary Schr\"odinger equation in the highly oscillatory regime. We compute an approximate solution based on the well-known WKB-ansatz, which relies on an asymptotic expansion w.r.t. the small parameter $\varepsilon$. Assuming that the coefficient in the equation is analytic, we derive an explicit error estimate for the truncated WKB series, in terms of $\varepsilon$ and the truncation order $N$. For any fixed $\varepsilon$, this allows to determine the optimal truncation order $N_{opt}$ which turns out to be proportional to $\varepsilon{-1}$. When chosen this way, the resulting error of the optimally truncated WKB series behaves like $\mathcal{O}(\exp(-r/\varepsilon))$, with some parameter $r>0$. The theoretical results established in this paper are confirmed by several numerical examples.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. Advanpix LLC. Multiprecision Computing Toolbox for Matlab version 5.1.0.15432. Advanpix LLC, 2023.
  2. An adaptive spectral method for oscillatory second-order linear ODEs with frequency-independent cost. arXiv, abs/2212.06924, 2022.
  3. WKB-Based Schemes for the Oscillatory 1D Schrödinger Equation in the Semiclassical Limit. SIAM J. Numer. Anal., 49:1436–1460, 2011.
  4. WKB-method for the 1D Schrödinger equation in the semi-classical limit: enhanced phase treatment. BIT Numerical Mathematics, 62:1–22, 2022.
  5. Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory. Springer New York, NY, 1 edition, 1999.
  6. J. P. Boyd. The Devil’s Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series. Acta Applicandae Mathematica, 56:1–98, 1999.
  7. On the errors incurred calculating derivatives using Chebyshev polynomials. Journal of Computational Physics, 99:56–67, 1992.
  8. M. M. Chawla. Error estimates for the Clenshaw-Curtis quadrature. Mathematics of Computation, 22:651–656, 1968.
  9. A method for numerical integration on an automatic computer. Numerische Mathematik, 2:197–205, 1960.
  10. Theory of the alternating-gradient synchrotron. Annals of Physics, 281:360–408, 1958.
  11. D. Funaro. A Preconditioning Matrix for the Chebyshev Differencing Operator. SIAM Journal on Numerical Analysis, 24:1024–1031, 1987.
  12. Concrete mathematics - a foundation for computer science. Addison-Wesley Publishing Company, 1991.
  13. T. Jahnke and C. Lubich. Numerical integrators for quantum dynamics close to the adiabatic limit. Numerische Mathematik, 94:289–314, 2003.
  14. Quantenmechanik. Akademie-Verlag, 1985.
  15. H. R. Lewis. Motion of a Time-Dependent Harmonic Oscillator, and of a Charged Particle in a Class of Time-Dependent, Axially Symmetric Electromagnetic Fields. Phys. Rev., 172:1313–1315, 1968.
  16. Adiabatic Integrators for Highly Oscillatory Second-Order Linear Differential Equations with Time-Varying Eigendecomposition. BIT Numerical Mathematics, 45:91–115, 2005.
  17. J. Martin and D. J. Schwarz. WKB approximation for inflationary cosmological perturbations. Physical Review D, 67:083512, 2003.
  18. J. M. Melenk. On the robust exponential convergence of h⁢pℎ𝑝hpitalic_h italic_p finite element methods for problems with boundary layers. IMA Journal of Numerical Analysis, 17:577–601, 1997.
  19. Transient Schrödinger-Poisson simulations of a high-frequency resonant tunneling diode oscillator. J. Comput. Phys., 239:187–205, 2013.
  20. C. Negulescu. Asymptotical models and numerical schemes for quantum systems. PhD thesis, Université Paul Sabatier, Toulouse, 2005.
  21. NIST Handbook of Mathematical Functions. Cambridge University Press, 2010.
  22. M. Robnik and V. G. Romanovski. Some properties of WKB series. Journal of Physics A, 33:5093–5104, 2000.
  23. Resonant tunneling diodes: models and properties. Proc. IEEE, 86:641–660, 1998.
  24. L. N. Trefethen. Spectral Methods in Matlab. vol. 10 of Software, Environments, and Tools, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
  25. S. Winitzki. Cosmological particle production and the precision of the WKB approximation. Physical Review D, 72:104011, 2005.
Citations (2)

Summary

We haven't generated a summary for this paper yet.