Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparative Analysis of U-Net-based models for Segmentation of Cardiac MRI (2401.09980v2)

Published 18 Jan 2024 in eess.IV, cs.CV, and cs.LG

Abstract: Medical imaging refers to the technologies and methods utilized to view the human body and its inside, in order to diagnose, monitor, or even treat medical disorders. This paper aims to explore the application of deep learning techniques in the semantic segmentation of Cardiac short-axis MRI (Magnetic Resonance Imaging) images, aiming to enhance the diagnosis, monitoring, and treatment of medical disorders related to the heart. The focus centers on implementing various architectures that are derivatives of U-Net, to effectively isolate specific parts of the heart for comprehensive anatomical and functional analysis. Through a combination of images, graphs, and quantitative metrics, the efficacy of the models and their predictions are showcased. Additionally, this paper addresses encountered challenges and outline strategies for future improvements. This abstract provides a concise overview of the efforts in utilizing deep learning for cardiac image segmentation, emphasizing both the accomplishments and areas for further refinement.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets