Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WindSeer: Real-time volumetric wind prediction over complex terrain aboard a small UAV (2401.09944v1)

Published 18 Jan 2024 in cs.LG, cs.AI, and cs.RO

Abstract: Real-time high-resolution wind predictions are beneficial for various applications including safe manned and unmanned aviation. Current weather models require too much compute and lack the necessary predictive capabilities as they are valid only at the scale of multiple kilometers and hours - much lower spatial and temporal resolutions than these applications require. Our work, for the first time, demonstrates the ability to predict low-altitude wind in real-time on limited-compute devices, from only sparse measurement data. We train a neural network, WindSeer, using only synthetic data from computational fluid dynamics simulations and show that it can successfully predict real wind fields over terrain with known topography from just a few noisy and spatially clustered wind measurements. WindSeer can generate accurate predictions at different resolutions and domain sizes on previously unseen topography without retraining. We demonstrate that the model successfully predicts historical wind data collected by weather stations and wind measured onboard drones.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. J. Mattuella, A. Loredo-Souza, M. Oliveira, and A. Petry, “Wind tunnel experimental analysis of a complex terrain micrositing,” Renewable and Sustainable Energy Reviews, vol. 54, pp. 110–119, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364032115010588
  2. M. Belo-Pereira and J. A. Santos, “Air-traffic restrictions at the madeira international airport due to adverse winds: Links to synoptic-scale patterns and orographic effects,” Atmosphere, vol. 11, no. 11, 2020. [Online]. Available: https://www.mdpi.com/2073-4433/11/11/1257
  3. T. Schlegel, M. Geissmann, M. Hertach, and D. Kröpfli, “Windatlas Schweiz: Jahresmittel der modellierten windgeschwindigkeit und windrichtung,” Federal Department of Environment, Transport, Energy and Communications (UVEK), Tech. Rep. COO.2207.110.2.1073455, 2016.
  4. P. Oettershagen, A. Melzer, T. Mantel, K. Rudin, R. Lotz, D. Siebenmann, S. Leutenegger, K. Alexis, and R. Siegwart, “A solar-powered hand-launchable uav for low-altitude multi-day continuous flight,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 3986–3993.
  5. T. Stastny and R. Siegwart, “On flying backwards: Preventing run-away of small, low-speed, fixed-wing uavs in strong winds,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 5198–5205.
  6. A. Chakrabarty and J. Langelaan, “Uav flight path planning in time varying complex wind-fields,” in 2013 American Control Conference, 2013, pp. 2568–2574.
  7. R. Buizza, “Chaos and weather prediction,” 2002. [Online]. Available: https://www.ecmwf.int/node/16927
  8. A. Voudouri, P. Khain, I. Carmona, E. Avgoustoglou, P. Kaufmann, F. Grazzini, and J. Bettems, “Optimization of high resolution cosmo model performance over switzerland and northern italy,” Atmospheric Research, vol. 213, pp. 70–85, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169809517307305
  9. J. Berg, J. Mann, A. Bechmann, M. Courtney, and H. E. Jørgensen, “The Bolund experiment, part I: flow over a steep, three-dimensional hill,” Boundary-layer meteorology, vol. 141, no. 2, p. 219, 2011.
  10. A. Bechmann, N. N. Sørensen, J. Berg, J. Mann, and P.-E. Réthoré, “The Bolund experiment, part II: blind comparison of microscale flow models,” Boundary-Layer Meteorology, vol. 141, no. 2, p. 245, 2011.
  11. N. Vasiljević, G. Lea, M. Courtney, J.-P. Cariou, J. Mann, and T. Mikkelsen, “Long-range windscanner system,” Remote Sensing, vol. 8, no. 11, 2016. [Online]. Available: https://www.mdpi.com/2072-4292/8/11/896
  12. P. A. Taylor and H. W. Teunissen, “The askervein hill project: Overview and background data,” Boundary-Layer Meteorology, vol. 39, no. 15, 1987.
  13. H. J. S. Fernando, J. Mann, J. M. L. M. Palma, J. K. Lundquist, R. J. Barthelmie, M. Belo-Pereira, W. O. J. Brown, F. K. Chow, T. Gerz, C. M. Hocut, P. M. Klein, L. S. Leo, J. C. Matos, S. P. Oncley, S. C. Pryor, L. Bariteau, T. M. Bell, N. Bodini, M. B. Carney, M. S. Courtney, E. D. Creegan, R. Dimitrova, S. Gomes, M. Hagen, J. O. Hyde, S. Kigle, R. Krishnamurthy, J. C. Lopes, L. Mazzaro, J. M. T. Neher, R. Menke, P. Murphy, L. Oswald, S. Otarola-Bustos, A. K. Pattantyus, C. V. Rodrigues, A. Schady, N. Sirin, S. Spuler, E. Svensson, J. Tomaszewski, D. D. Turner, L. van Veen, N. Vasiljević, D. Vassallo, S. Voss, N. Wildmann, and Y. Wang, “The perdigão: Peering into microscale details of mountain winds,” Bulletin of the American Meteorological Society, vol. 100, no. 5, pp. 799 – 819, 2019.
  14. Y. Xie, E. Franz, M. Chu, and N. Thuerey, “tempoGAN: A temporally coherent, volumetric GAN for super-resolution fluid flow,” ACM Transactions on Graphics (TOG), vol. 37, no. 4, p. 95, 2018.
  15. B. Kim, V. C. Azevedo, N. Thuerey, T. Kim, M. Gross, and B. Solenthaler, “Deep fluids: A generative network for parameterized fluid simulations,” Computer Graphics Forum, vol. 38, no. 2, pp. 59–70, 2019. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13619
  16. M. D. Ribeiro, A. Rehman, S. Ahmed, and A. Dengel, “Deepcfd: Efficient steady-state laminar flow approximation with deep convolutional neural networks,” arXiv preprint arXiv:2004.08826, 2020.
  17. S. Bhatnagar, Y. Afshar, S. Pan, K. Duraisamy, and S. Kaushik, “Prediction of aerodynamic flow fields using convolutional neural networks,” Computational Mechanics, vol. 64, no. 2, pp. 525–545, 2019.
  18. N. Umetani and B. Bickel, “Learning three-dimensional flow for interactive aerodynamic design,” ACM Trans. Graph., vol. 37, no. 4, pp. 89:1–89:10, Jul. 2018. [Online]. Available: http://doi.acm.org/10.1145/3197517.3201325
  19. P. Baqué, E. Remelli, F. Fleuret, and P. Fua, “Geodesic convolutional shape optimization,” arXiv preprint arXiv:1802.04016, 2018.
  20. T.-T.-H. Le, H. Kang, and H. Kim, “Towards incompressible laminar flow estimation based on interpolated feature generation and deep learning,” Sustainability, vol. 14, no. 19, p. 11996, 2022.
  21. A. Güemes, C. Sanmiguel Vila, and S. Discetti, “Super-resolution generative adversarial networks of randomly-seeded fields,” Nature Machine Intelligence, vol. 4, no. 12, pp. 1165–1173, 2022.
  22. K. Fukami, R. Maulik, N. Ramachandra, K. Fukagata, and K. Taira, “Global field reconstruction from sparse sensors with voronoi tessellation-assisted deep learning,” Nature Machine Intelligence, vol. 3, no. 11, pp. 945–951, 2021.
  23. K. Fukami, K. Fukagata, and K. Taira, “Super-resolution analysis via machine learning: a survey for fluid flows,” Theoretical and Computational Fluid Dynamics, pp. 1–24, 2023.
  24. Z. Yang, H. Yang, and Z. Yin, “Super-resolution reconstruction for the three-dimensional turbulence flows with a back-projection network,” Physics of Fluids, vol. 35, no. 5, p. 055123, 05 2023.
  25. N. Wandel, M. Weinmann, and R. Klein, “Unsupervised deep learning of incompressible fluid dynamics,” CoRR, vol. abs/2006.08762, 2020. [Online]. Available: https://arxiv.org/abs/2006.08762
  26. J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani, T. Kurth, D. Hall, Z. Li, K. Azizzadenesheli, P. Hassanzadeh, K. Kashinath, and A. Anandkumar, “Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators,” arXiv preprint arXiv:2202.11214, 2022.
  27. K. Bi, L. Xie, H. Zhang, X. Chen, X. Gu, and Q. Tian, “Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast,” arXiv preprint arXiv:2211.02556, 2022.
  28. R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, A. Pritzel, S. Ravuri, T. Ewalds, F. Alet, Z. Eaton-Rosen et al., “Graphcast: Learning skillful medium-range global weather forecasting,” arXiv preprint arXiv:2212.12794, 2022.
  29. USGS, “3d elevation program,” https://www.usgs.gov/3d-elevation-program, Dec 2021.
  30. SwissTopo, “3d elevation program,” https://www.geo.admin.ch/en/geo-information-switzerland/geodata-index-inspire/surface-representation/elevation.html, Dec 2021.
  31. P. Oettershagen, A. Melzer, T. Mantel, K. Rudin, T. Stastny, B. Wawrzacz, T. Hinzmann, S. Leutenegger, K. Alexis, and R. Siegwart, “Design of small hand-launched solar-powered uavs: From concept study to a multi-day world endurance record flight,” Journal of Field Robotics, vol. 34, no. 7, pp. 1352–1377, 2017. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21717
  32. S. L. Ellis, M. L. Taylor, M. Schiele, and T. B. Letessier, “Influence of altitude on tropical marine habitat classification using imagery from fixed-wing, water-landing uavs,” Remote Sensing in Ecology and Conservation, vol. 7, no. 1, pp. 50–63, 2021. [Online]. Available: https://zslpublications.onlinelibrary.wiley.com/doi/abs/10.1002/rse2.160
  33. E. J. Lantz, J. O. Roberts, J. Nunemaker, E. DeMeo, K. L. Dykes, and G. N. Scott, “Increasing wind turbine tower heights: Opportunities and challenges,” National Renewable Energy Lab.(NREL), Golden, CO (United States), Tech. Rep., 2019.
  34. H. M. P. C. Jayaweera and S. Hanoun, “Path planning of unmanned aerial vehicles (uavs) in windy environments,” Drones, vol. 6, no. 5, p. 101, Apr 2022.
  35. M. Coombes, W.-H. Chen, and C. Liu, “Flight testing boustrophedon coverage path planning for fixed wing uavs in wind,” in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 711–717.
  36. P. Oettershagen, J. Förster, L. Wirth, G. Hitz, R. Siegwart, and J. Ambühl, “Meteorology-aware multi-goal path planning for large-scale inspection missions with solar-powered aircraft,” Journal of Aerospace Information Systems, vol. 16, no. 10, pp. 390–408, 2019.
  37. A. Kashefi, D. Rempe, and L. J. Guibas, “A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries,” Physics of Fluids, vol. 33, no. 2, p. 027104, 2021.
  38. J. Zhang and X. Zhao, “Machine-learning-based surrogate modeling of aerodynamic flow around distributed structures,” AIAA Journal, vol. 59, no. 3, pp. 868–879, 2021.
  39. F. Ma and S. Karaman, “Sparse-to-dense: Depth prediction from sparse depth samples and a single image,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, pp. 4796–4803.
  40. M. Jaritz, R. de Charette, E. Wirbel, X. Perrotton, and F. Nashashibi, “Sparse and Dense Data with CNNs: Depth Completion and Semantic Segmentation,” arXiv e-prints, p. arXiv:1808.00769, Aug. 2018.
  41. K. Lu, N. Barnes, S. Anwar, and L. Zheng, “From depth what can you see? depth completion via auxiliary image reconstruction,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 11 303–11 312.
  42. Z. Huang, J. Fan, S. Cheng, S. Yi, X. Wang, and H. Li, “HMS-Net: Hierarchical Multi-scale Sparsity-invariant Network for Sparse Depth Completion,” arXiv e-prints, p. arXiv:1808.08685, Aug. 2018.
  43. W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, Z. Liu, J. Berner, W. Wang, J. G. Powers, M. G. Duda, D. M. Barker et al., “A description of the advanced research wrf model version 4,” National Center for Atmospheric Research: Boulder, CO, USA, vol. 145, no. 145, p. 550, 2019.
  44. B. Blocken, “50 years of computational wind engineering: Past, present and future,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 129, pp. 69–102, 2014.
  45. Z. Akos, M. Nagy, S. Leven, and T. Vicsek, “Thermal soaring flight of birds and unmanned aerial vehicles,” Bioinspiration & Biomimetics, vol. 5, no. 4, 2010.
  46. C.-Y. Chang, J. Schmidt, M. Dörenkämper, and B. Stoevesandt, “A consistent steady state cfd simulation method for stratified atmospheric boundary layer flows,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 172, pp. 55–67, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167610517305135
  47. L. Sankaralingam and C. Ramprasadh, “Angle of attack measurement using low-cost 3d printed five hole probe for uav applications,” Measurement, vol. 168, p. 108379, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0263224120309155
  48. H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, “A tensorial approach to computational continuum mechanics using object-oriented techniques,” Computers in Physics, vol. 12, no. 6, pp. 620–631, 1998.
  49. H. Jasak, A. Jemcov, v. Tuković et al., “OpenFOAM: A C++ library for complex physics simulations,” in International workshop on coupled methods in numerical dynamics.   IUC Dubrovnik, Croatia, 2007, pp. 1–20.
  50. B. E. Launder and B. Sharma, “Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc,” Letters in heat and mass transfer, vol. 1, no. 2, pp. 131–137, 1974.
  51. F. Achermann, N. R. J. Lawrance, R. Ranftl, A. Dosovitskiy, J. J. Chung, and R. Siegwart, “Learning to predict the wind for safe aerial vehicle planning,” in 2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 2311–2317.
  52. C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal of Big Data, vol. 6, 2019. [Online]. Available: https://doi.org/10.1186/s40537-019-0197-0
  53. R. Köhler, C. Schuler, B. Schölkopf, and S. Harmeling, “Mask-specific inpainting with deep neural networks,” 09 2014, pp. 523–534.
  54. J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and A. Geiger, “Sparsity invariant cnns,” in 2017 International Conference on 3D Vision (3DV), 2017, pp. 11–20.
  55. K. Nirmal, A. G. Sreejith, J. Mathew, M. Sarpotdar, A. Suresh, A. Prakash, M. Safonova, and J. Murthy, “Noise modeling and analysis of an IMU-based attitude sensor: improvement of performance by filtering and sensor fusion,” arXiv e-prints, p. arXiv:1608.07053, Aug. 2016.
  56. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention.   Springer, 2015, pp. 234–241.
  57. A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard artifacts,” Distill, 2016. [Online]. Available: http://distill.pub/2016/deconv-checkerboard
  58. A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network acoustic models,” in in ICML Workshop on Deep Learning for Audio, Speech and Language Processing, 2013.
  59. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference for Learning Representations, 2015.
  60. H. Ku, “Notes on the use of propagation of error formulas,” Journal of Research of the National Bureau of Standards. Section C: Engineering and Instrumentation, vol. 70C, no. 4, pp. 263–273, 1966.
  61. L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “Pixhawk: A system for autonomous flight using onboard computer vision,” in 2011 IEEE International Conference on Robotics and Automation.   IEEE, 2011, pp. 2992–2997.
  62. L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based multithreaded open source robotics framework for deeply embedded platforms,” in 2015 IEEE international conference on robotics and automation (ICRA).   IEEE, 2015, pp. 6235–6240.
  63. J. A. Mulder, Q. P. Chu, J. K. Sridhar, J. H. Breeman, and M. Laban, “Non-linear aircraft flight path reconstruction review and new advances,” Progress in Aerospace Sciences, vol. 35, no. 7, pp. 673–726, Oct. 1999.
  64. D. A. Hastings, P. K. Dunbar, G. M. Elphingstone, M. Bootz, H. Murakami, H. Maruyama, H. Masaharu, P. Holland, J. Payne, N. A. Bryant et al., “The global land one-kilometer base elevation (globe) digital elevation model, version 1.0,” National Oceanic and Atmospheric Administration, National Geophysical Data Center, vol. 325, pp. 80 305–3328, 1999.
  65. G.-A. Heinrich, S. Vogt, N. R. J. Lawrance, T. J. Stastny, and R. Y. Siegwart, “In-wing pressure measurements for airspeed and airflow angle estimation and high angle-of-attack flight,” Journal of Guidance, Control, and Dynamics, vol. 0, no. 0, pp. 1–13, 2021. [Online]. Available: https://doi.org/10.2514/1.G006412
  66. C. Ejeh, I. Afgan, R. Shittu, A. Sakirudeen, and P. Anumah, “Investigating the impact of velocity fluctuations and compressibility to aerodynamic efficiency of a fixed-wing aircraft,” Results in Physics, vol. 18, p. 103263, 2020.
  67. S. E. Sayed Ahmed, E. Z. Ibrahiem, O. M. Mesalhy, and M. A. Abdelatief, “Effect of attack and cone angels on air flow characteristics for staggered wing shaped tubes bundle,” Heat and Mass Transfer, vol. 51, pp. 1001–1016, 2015.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets