Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discretization of fractional fully nonlinear equations by powers of discrete Laplacians (2401.09926v2)

Published 18 Jan 2024 in math.NA, cs.NA, and math.AP

Abstract: We study discretizations of fractional fully nonlinear equations by powers of discrete Laplacians. Our problems are parabolic and of order $\sigma\in(0,2)$ since they involve fractional Laplace operators $(-\Delta){\sigma/2}$. They arise e.g. in control and game theory as dynamic programming equations -- HJB and Isaacs equation -- and solutions are non-smooth in general and should be interpreted as viscosity solutions. Our approximations are realized as finite-difference quadrature approximations and are 2nd order accurate for all values of $\sigma$. The accuracy of previous approximations of fractional fully nonlinear equations depend on $\sigma$ and are worse when $\sigma$ is close to $2$. We show that the schemes are monotone, consistent, $L\infty$-stable, and convergent using a priori estimates, viscosity solutions theory, and the method of half-relaxed limits. We also prove a second order error bound for smooth solutions and present many numerical examples.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. D.  Applebaum. Lévy processes and stochastic calculus. Cambridge University Press, Cambridge, 116 (2) (2009).
  2. M. Bardi and I. Capuzzo Dolcetta. Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkauser, 1996.
  3. The nonconvex multidimensional Riemann problem for Hamilton-Jacobi equations. SIAM J. Math. Anal., 22 (2) (1991), 344–351.
  4. Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 25 (3) (2008), 567–585.
  5. G.  Barles and P. E.  Souganidis. Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal., 4 (1991), 271–283.
  6. R. Bellman. Dynamic programming. Reprint of the 1957 edition. Princeton, 2010.
  7. I. H. Biswas. On zero-sum stochastic differential games with jump-diffusion driven state: a viscosity solution framework. SIAM J. Control Optim. 50(4):1823–1858, 2012.
  8. I. H.  Biswas, I.  Chowdhury and E. R. Jakobsen. On the rate of convergence for monotone numerical schemes for nonlocal Isaacs’ equations. SIAM J. Numer. Anal., 57 (2) (2019), 799–827.
  9. I.H.  Biswas, E.R.  Jakobsen and K.H.  Karlsen. Error estimates for a class of finite difference-quadrature schemes for fully nonlinear degenerate parabolic integro-PDEs. J. Hyperbolic Differ. Equ., 5 (1) (2008), 187–219.
  10. I.H.  Biswas, E.R.  Jakobsen and K.H.  Karlsen. Difference-quadrature schemes for nonlinear degenerate parabolic integro-PDE. SIAM J. Numer. Anal., 48 (3) (2010), 1110–1135.
  11. A.  Bonito and J. E.  Pasciak. Numerical Approximation of fractional powers of elliptic operators. Math. Comp., 84 (295) (2015), 2083–2110.
  12. J. F. Bonnans and H. Zidani. Consistency of generalized finite difference schemes for the stochastic HJB equation. SIAM J. Numer. Anal. 41(3) (2003), 1008–1021.
  13. Discrete-time approximation and monte-carlo simulation of backward stochastic differential equations. Stoch. Process Their Appl. 111 (2) (2004), 175–206.
  14. The finite element approximation of Hamilton-Jacobi-Bellman equations. Comput. Math. Appl. 41 (7-8) (2001), 993–1007.
  15. F. Camilli and M.  Falcone. An approximation scheme for the optimal control of diffusion processes, RAIRO Modél. Math. Anal. Numér, 29 (1) (1995), 97–122.
  16. F.  Camilli and E. R.  Jakobsen. A finite element like scheme for integro-partial differential Hamilton-Jacobi-Bellman equations, SIAM J. Numer. Anal., 47 (2009), 2407–2431.
  17. E.  Chasseigne and E. R.  Jakobsen. On nonlocal quasilinear equations and their local limits, J. Differential Equations, 262 (6) (2017), 3759–3804.
  18. I. Chowdhury and E. R. Jakobsen. Precise Error Bounds for Numerical Approximations of Fractional HJB Equations. Preprint 2023, arXiv:2308.16434.
  19. Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications. Adv. Math., 330 (2018), 688–738.
  20. O. Ciaurri and L. Roncal and P. R. Stinga and J. L. Torrea and J. L. Varona Fractional discrete Laplacian versus discretized fractional Laplacian, (2023 Preprint, arXiv:1507.04986.
  21. A convergent difference scheme for a class of partial integro-differential equations modeling pricing under uncertainty, SIAM J. Numer. Anal.,  54 (2016), 588–605.
  22. Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, (2004), xvi+535 pp.
  23. A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models. SIAM J. Numer. Anal. 43 (4) (2005), 1596–1626.
  24. M. G.  Crandall and P. L.  Lions. Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp. , 43 (1984), 1–19.
  25. Numerical approximations for fractional elliptic equations via the method of semigroups. ESAIM Math. Model. Numer. Anal. 54(3):751–774, 2020.
  26. Semi-Lagrangian schemes for linear and fully non-linear diffusion equations. Math. Comp., 82 (283)(2013), 1433–1462.
  27. Approximation schemes for mixed optimal stopping and control problems with nonlinear expectations and jumps. Appl. Math. Optim. 83 (3) (2021), 1387–1429.
  28. Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments. SIAM J. Numer. Anal., 56 (6) (2018), 3611–3647.
  29. Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations. Society for Industrial and Applied Mathematics (SIAM), 2014.
  30. W. H. Fleming and H. M. Soner. Controlled Markov processes and viscosity solutions, Springer, New York, 2006.
  31. Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. USA 115(34) (2018), 8505–8510.
  32. F. L. Hanson. Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis and Computation. Society for Industrial and Applied Mathematics (SIAM), 2007.
  33. H. Ishii and A Roch. Existence and uniqueness of viscosity solutions of an integro-differential equation arising in option pricing. SIAM J. Financial Math. 12 (2)(2021), 604–640.
  34. E. R.  Jakobsen and K. H.  Karlsen. Continuous dependence estimates for viscosity solutions of integro-PDEs. J. Differential Equations, 212 (2) (2005), 278–318.
  35. E. R.  Jakobsen and K. H.  Karlsen. A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations. NoDEA Nonlinear Differential Equations Appl., 13 (2006), 137–165.
  36. E. R.  Jakobsen, K. H.  Karlsen and C.  La Chioma. Error estimates for approximate solutions to Bellman equations associated with controlled jump-diffusions. Numer. Math., 110 (2) (2008), 221–255.
  37. H. J. Kushner and P. Dupuis. Numerical methods for stochastic control problems in continuous time. Springer, 2001.
  38. Kwasnicki, M. Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20(1):7–51, 2017.
  39. O. Lepsky. Spectral Viscosity Approximations to Hamilton–Jacobi Solutions. SIAM J. Numer. Anal. 38 (5) (2000), 1439–1453.
  40. S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1) (1988), no.1, 12–49.
  41. S. Osher and C. W. Shu. High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28 (4) (1991), 907–922.
  42. Applied stochastic control of jump diffusions. Springer, Cham, 2019.
  43. C. Reisinger, Y. Zhang. A penalty scheme and policy iteration for nonlocal HJB variational inequalities with monotone nonlinearities. Comput. Math. Appl. 93 (2021), 199–213.
  44. Obstacle problems for nonlocal operators with singular kernels. Preprint arXiv:2308.01695.
  45. Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordès coefficients. SIAM J. Numer. Anal. 51 (4) (2013), 2088–2106.
  46. P. E.  Souganidis. Approximation schemes for viscosity solutions of Hamilton-Jacobi equations, J. Differential Equations, 59 (1) (1985),  1–43.
  47. F. del Teso and E. R. Jakobsen. A convergent finite difference-quadrature scheme for the porous medium equation with nonlocal pressure, Preprint, arXiv:2303.05168 [math.NA], (2023).
Citations (2)

Summary

We haven't generated a summary for this paper yet.