Discretization of fractional fully nonlinear equations by powers of discrete Laplacians (2401.09926v2)
Abstract: We study discretizations of fractional fully nonlinear equations by powers of discrete Laplacians. Our problems are parabolic and of order $\sigma\in(0,2)$ since they involve fractional Laplace operators $(-\Delta){\sigma/2}$. They arise e.g. in control and game theory as dynamic programming equations -- HJB and Isaacs equation -- and solutions are non-smooth in general and should be interpreted as viscosity solutions. Our approximations are realized as finite-difference quadrature approximations and are 2nd order accurate for all values of $\sigma$. The accuracy of previous approximations of fractional fully nonlinear equations depend on $\sigma$ and are worse when $\sigma$ is close to $2$. We show that the schemes are monotone, consistent, $L\infty$-stable, and convergent using a priori estimates, viscosity solutions theory, and the method of half-relaxed limits. We also prove a second order error bound for smooth solutions and present many numerical examples.
- D. Applebaum. Lévy processes and stochastic calculus. Cambridge University Press, Cambridge, 116 (2) (2009).
- M. Bardi and I. Capuzzo Dolcetta. Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkauser, 1996.
- The nonconvex multidimensional Riemann problem for Hamilton-Jacobi equations. SIAM J. Math. Anal., 22 (2) (1991), 344–351.
- Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 25 (3) (2008), 567–585.
- G. Barles and P. E. Souganidis. Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal., 4 (1991), 271–283.
- R. Bellman. Dynamic programming. Reprint of the 1957 edition. Princeton, 2010.
- I. H. Biswas. On zero-sum stochastic differential games with jump-diffusion driven state: a viscosity solution framework. SIAM J. Control Optim. 50(4):1823–1858, 2012.
- I. H. Biswas, I. Chowdhury and E. R. Jakobsen. On the rate of convergence for monotone numerical schemes for nonlocal Isaacs’ equations. SIAM J. Numer. Anal., 57 (2) (2019), 799–827.
- I.H. Biswas, E.R. Jakobsen and K.H. Karlsen. Error estimates for a class of finite difference-quadrature schemes for fully nonlinear degenerate parabolic integro-PDEs. J. Hyperbolic Differ. Equ., 5 (1) (2008), 187–219.
- I.H. Biswas, E.R. Jakobsen and K.H. Karlsen. Difference-quadrature schemes for nonlinear degenerate parabolic integro-PDE. SIAM J. Numer. Anal., 48 (3) (2010), 1110–1135.
- A. Bonito and J. E. Pasciak. Numerical Approximation of fractional powers of elliptic operators. Math. Comp., 84 (295) (2015), 2083–2110.
- J. F. Bonnans and H. Zidani. Consistency of generalized finite difference schemes for the stochastic HJB equation. SIAM J. Numer. Anal. 41(3) (2003), 1008–1021.
- Discrete-time approximation and monte-carlo simulation of backward stochastic differential equations. Stoch. Process Their Appl. 111 (2) (2004), 175–206.
- The finite element approximation of Hamilton-Jacobi-Bellman equations. Comput. Math. Appl. 41 (7-8) (2001), 993–1007.
- F. Camilli and M. Falcone. An approximation scheme for the optimal control of diffusion processes, RAIRO Modél. Math. Anal. Numér, 29 (1) (1995), 97–122.
- F. Camilli and E. R. Jakobsen. A finite element like scheme for integro-partial differential Hamilton-Jacobi-Bellman equations, SIAM J. Numer. Anal., 47 (2009), 2407–2431.
- E. Chasseigne and E. R. Jakobsen. On nonlocal quasilinear equations and their local limits, J. Differential Equations, 262 (6) (2017), 3759–3804.
- I. Chowdhury and E. R. Jakobsen. Precise Error Bounds for Numerical Approximations of Fractional HJB Equations. Preprint 2023, arXiv:2308.16434.
- Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications. Adv. Math., 330 (2018), 688–738.
- O. Ciaurri and L. Roncal and P. R. Stinga and J. L. Torrea and J. L. Varona Fractional discrete Laplacian versus discretized fractional Laplacian, (2023 Preprint, arXiv:1507.04986.
- A convergent difference scheme for a class of partial integro-differential equations modeling pricing under uncertainty, SIAM J. Numer. Anal., 54 (2016), 588–605.
- Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, (2004), xvi+535 pp.
- A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models. SIAM J. Numer. Anal. 43 (4) (2005), 1596–1626.
- M. G. Crandall and P. L. Lions. Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp. , 43 (1984), 1–19.
- Numerical approximations for fractional elliptic equations via the method of semigroups. ESAIM Math. Model. Numer. Anal. 54(3):751–774, 2020.
- Semi-Lagrangian schemes for linear and fully non-linear diffusion equations. Math. Comp., 82 (283)(2013), 1433–1462.
- Approximation schemes for mixed optimal stopping and control problems with nonlinear expectations and jumps. Appl. Math. Optim. 83 (3) (2021), 1387–1429.
- Robust numerical methods for nonlocal (and local) equations of porous medium type. Part II: Schemes and experiments. SIAM J. Numer. Anal., 56 (6) (2018), 3611–3647.
- Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations. Society for Industrial and Applied Mathematics (SIAM), 2014.
- W. H. Fleming and H. M. Soner. Controlled Markov processes and viscosity solutions, Springer, New York, 2006.
- Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. USA 115(34) (2018), 8505–8510.
- F. L. Hanson. Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis and Computation. Society for Industrial and Applied Mathematics (SIAM), 2007.
- H. Ishii and A Roch. Existence and uniqueness of viscosity solutions of an integro-differential equation arising in option pricing. SIAM J. Financial Math. 12 (2)(2021), 604–640.
- E. R. Jakobsen and K. H. Karlsen. Continuous dependence estimates for viscosity solutions of integro-PDEs. J. Differential Equations, 212 (2) (2005), 278–318.
- E. R. Jakobsen and K. H. Karlsen. A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations. NoDEA Nonlinear Differential Equations Appl., 13 (2006), 137–165.
- E. R. Jakobsen, K. H. Karlsen and C. La Chioma. Error estimates for approximate solutions to Bellman equations associated with controlled jump-diffusions. Numer. Math., 110 (2) (2008), 221–255.
- H. J. Kushner and P. Dupuis. Numerical methods for stochastic control problems in continuous time. Springer, 2001.
- Kwasnicki, M. Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20(1):7–51, 2017.
- O. Lepsky. Spectral Viscosity Approximations to Hamilton–Jacobi Solutions. SIAM J. Numer. Anal. 38 (5) (2000), 1439–1453.
- S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1) (1988), no.1, 12–49.
- S. Osher and C. W. Shu. High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28 (4) (1991), 907–922.
- Applied stochastic control of jump diffusions. Springer, Cham, 2019.
- C. Reisinger, Y. Zhang. A penalty scheme and policy iteration for nonlocal HJB variational inequalities with monotone nonlinearities. Comput. Math. Appl. 93 (2021), 199–213.
- Obstacle problems for nonlocal operators with singular kernels. Preprint arXiv:2308.01695.
- Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordès coefficients. SIAM J. Numer. Anal. 51 (4) (2013), 2088–2106.
- P. E. Souganidis. Approximation schemes for viscosity solutions of Hamilton-Jacobi equations, J. Differential Equations, 59 (1) (1985), 1–43.
- F. del Teso and E. R. Jakobsen. A convergent finite difference-quadrature scheme for the porous medium equation with nonlocal pressure, Preprint, arXiv:2303.05168 [math.NA], (2023).