Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The effects of detuning on entropic uncertainty bound and quantum correlations in dissipative environment (2401.09782v3)

Published 18 Jan 2024 in quant-ph

Abstract: One of the fundamental arguments in quantum information theory is the uncertainty principle. In accordance with this principle, two incompatible observables cannot be measured with high precision at the same time. In this work, we will use the entropic uncertainty relation in the presence of quantum memory. Considering a dissipative environment, the effects of the detuning between the transition frequency of a quantum memory and the center frequency of a cavity on entrpic uncertainty bound and quantum correlation between quantum memory and measured particle will be studied. It is shown that by increasing the detuning, quantum correlation is maintained. As a result, due to the inverse relationship between the uncertainty bound and quantum correlation, the measurement results is guessed more accurately.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. W. Heisenberg , Z. Phys.,43 173 (1927).
  2. E. H. Kennard, Z. Phys.,44 326 (1927).
  3. Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
  4. Y. B. Sheng and L. Zhou, Sci. Rep. 5 7815 (2015).
  5. C. Zheng and S. Wei, Int. J. Theor. Phys. 57 2203 (2018).
  6. Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
  7. Plenio M B 2005 Phys. Rev. Lett. 95 090503
  8. Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
  9. Christandl M and Winter A 2004 J. Math. Phys. 45 829
  10. Vidal G and Tarrach R 1999 Phys. Rev. A 59 141
  11. Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
  12. Mintert F, Kus M and Buchleitner A 2004 Phys. Rev. Lett. 92 167902
  13. Akhound A, Haddadi S and Chaman Motlagh M A 2019 Mod. Phys. Lett. B 33 1950118
  14. Haddadi S, Akhound A and Chaman Motlagh M A 2019 Int. J. Theor. Phys. 58 3406
  15. Barnum H and Linden N 2001 J. Phys. A: Math. Gen. 34 6787
  16. Wei T C and Goldbart P M 2003 Phys. Rev. A 68 042307
  17. Meyer D A and Wallach N R 2002 J. Math. Phys. 43 4273
  18. Scott A J 2004 Phys. Rev. A 69 052330
  19. Haddadi S 2017 Int. J. Theor. Phys. 56 2811
  20. Haddadi S 2020 Laser Phys. Lett. 17 075201
  21. Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
  22. Henderson L and Vedral V 2001 J. Phys. A 34 6899
  23. Haddadi S and Bohloul M 2018 Int. J. Theor. Phys. 57 3912
  24. Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
  25. Qiang W C, Zhang H P and Zhang L 2016 Int. J. Theor. Phys. 55 1833
  26. Singh U and Pati A K 2014 Ann. Phys. 343 141
  27. Wootters W K 1998 Phys. Rev. Lett. 80 2245

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com