The effects of detuning on entropic uncertainty bound and quantum correlations in dissipative environment (2401.09782v3)
Abstract: One of the fundamental arguments in quantum information theory is the uncertainty principle. In accordance with this principle, two incompatible observables cannot be measured with high precision at the same time. In this work, we will use the entropic uncertainty relation in the presence of quantum memory. Considering a dissipative environment, the effects of the detuning between the transition frequency of a quantum memory and the center frequency of a cavity on entrpic uncertainty bound and quantum correlation between quantum memory and measured particle will be studied. It is shown that by increasing the detuning, quantum correlation is maintained. As a result, due to the inverse relationship between the uncertainty bound and quantum correlation, the measurement results is guessed more accurately.
- W. Heisenberg , Z. Phys.,43 173 (1927).
- E. H. Kennard, Z. Phys.,44 326 (1927).
- Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
- Y. B. Sheng and L. Zhou, Sci. Rep. 5 7815 (2015).
- C. Zheng and S. Wei, Int. J. Theor. Phys. 57 2203 (2018).
- Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
- Plenio M B 2005 Phys. Rev. Lett. 95 090503
- Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
- Christandl M and Winter A 2004 J. Math. Phys. 45 829
- Vidal G and Tarrach R 1999 Phys. Rev. A 59 141
- Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
- Mintert F, Kus M and Buchleitner A 2004 Phys. Rev. Lett. 92 167902
- Akhound A, Haddadi S and Chaman Motlagh M A 2019 Mod. Phys. Lett. B 33 1950118
- Haddadi S, Akhound A and Chaman Motlagh M A 2019 Int. J. Theor. Phys. 58 3406
- Barnum H and Linden N 2001 J. Phys. A: Math. Gen. 34 6787
- Wei T C and Goldbart P M 2003 Phys. Rev. A 68 042307
- Meyer D A and Wallach N R 2002 J. Math. Phys. 43 4273
- Scott A J 2004 Phys. Rev. A 69 052330
- Haddadi S 2017 Int. J. Theor. Phys. 56 2811
- Haddadi S 2020 Laser Phys. Lett. 17 075201
- Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
- Henderson L and Vedral V 2001 J. Phys. A 34 6899
- Haddadi S and Bohloul M 2018 Int. J. Theor. Phys. 57 3912
- Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
- Qiang W C, Zhang H P and Zhang L 2016 Int. J. Theor. Phys. 55 1833
- Singh U and Pati A K 2014 Ann. Phys. 343 141
- Wootters W K 1998 Phys. Rev. Lett. 80 2245