Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Beam Direction Control and Radio Resource Allocation in Dynamic Multi-beam LEO Satellite Networks (2401.09711v1)

Published 18 Jan 2024 in cs.IT, cs.SY, eess.SY, and math.IT

Abstract: Multi-beam low earth orbit (LEO) satellites are emerging as key components in beyond 5G and 6G to provide global coverage and high data rate. To fully unleash the potential of LEO satellite communication, resource management plays a key role. However, the uneven distribution of users, the coupling of multi-dimensional resources, complex inter-beam interference, and time-varying network topologies all impose significant challenges on effective communication resource management. In this paper, we study the joint optimization of beam direction and the allocation of spectrum, time, and power resource in a dynamic multi-beam LEO satellite network. The objective is to improve long-term user sum data rate while taking user fairness into account. Since the concerned resource management problem is mixed-integer non-convex programming, the problem is decomposed into three subproblems, namely beam direction control and time slot allocation, user subchannel assignment, and beam power allocation. Then, these subproblems are solved iteratively by leveraging matching with externalities and successive convex approximation, and the proposed algorithms are analyzed in terms of stability, convergence, and complexity. Extensive simulations are conducted, and the results demonstrate that our proposal can improve the number of served users by up to two times and the sum user data rate by up to 68%, compared to baseline schemes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. S. Chen et al., “The trends, challenges, and key technologies of beam-space multiplexing in the integrated terristrial-satellite communication for B5G and 6G,” IEEE Wireless Commun., vol. 30, no. 6, pp. 77–86, Dec. 2023.
  2. S. Liu et al., “LEO satellite constellations for 5G and beyond: how will they reshape vertical domains?” IEEE Commun. Mag., vol. 59, no. 7, pp. 30–36, Jul. 2021.
  3. M. Lin et al., “Integrated 5G-satellite networks: a perspective on physical layer reliability and security,” IEEE Wireless Commun., vol. 27, no. 6, pp. 152–159, Dec. 2020.
  4. S. Yuan et al., “Software defined intelligent satellite-terrestrial integrated networks: insights and challenges,” Digit. Commun. Netw., vol. 9, no. 6, pp. 1331–1339, Dec. 2023.
  5. J. Zhu et al., “Timing advance estimation in low earth orbit satellite networks,” IEEE Trans. Veh. Technol., pp. 1–16, 2023, DOI: 10.1109/TVT.2023.3325328.
  6. S. Yuan et al., “Joint network function placement and routing optimization in dynamic software-defined satellite-terrestrial integrated networks,” IEEE Trans. Wireless Commun., pp. 1–15, Oct. 2023, DOI: 10.1109/TWC.2023.3324729.
  7. F. Li et al., “Spectrum optimization for satellite communication systems with heterogeneous user preferences,” IEEE Systems Journal, vol. 14, no. 2, pp. 2187–2191, Jun. 2020.
  8. P. Gu et al., “Dynamic cooperative spectrum sharing in a multi-beam LEO-GEO co-existing satellite system,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 1170–1182, Feb. 2022.
  9. Y. Kawamoto et al., “Flexible resource allocation with inter-beam interference in satellite communication systems with a digital channelizer,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 2934–2945, May 2020.
  10. J. Choi et al., “Optimum power and beam allocation based on traffic demands and channel conditions over satellite downlinks,” IEEE Trans. Wireless Commun., vol. 4, no. 6, pp. 2983–2993, Nov. 2005.
  11. Z. Lin et al., “Joint beamforming and power allocation for satellite-terrestrial integrated networks with non-orthogonal multiple access,” IEEE J. Sel. Top. Signal Process., vol. 13, no. 3, pp. 657–670, Jun. 2019.
  12. T. S. Abdu et al., “Flexible resource optimization for GEO multibeam satellite communication system,” IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 7888–7902, Dec. 2021.
  13. D. Zhou et al., “Machine learning-based resource allocation in satellite networks supporting internet of remote things,” IEEE Trans. Wireless Commun., vol. 20, no. 10, pp. 6606–6621, Oct. 2021.
  14. Y. Yuan et al., “Adapting to dynamic LEO-B5G systems: meta-critic learning based efficient resource scheduling,” IEEE Trans. Wireless Commun., vol. 21, no. 11, pp. 9582–9595, Nov. 2022.
  15. Y. Su et al., “Broadband LEO satellite communications: architectures and key technologies,” IEEE Wireless Commun., vol. 26, no. 2, pp. 55–61, Apr. 2019.
  16. H. Xv et al., “Joint beam scheduling and beamforming design for cooperative positioning in multi-beam LEO satellite networks,” IEEE Trans. Veh. Technol., pp. 1–12, 2023, DOI: 10.1109/TVT.2023.3332142.
  17. L. Yin et al., “Beam pointing optimization based downlink interference mitigation technique between NGSO satellite systems,” IEEE Wireless Commun. Lett., vol. 10, no. 11, pp. 2388–2392, Nov. 2021.
  18. V. P. Bui et al., “Joint beam placement and load balancing optimization for non-geostationary satellite systems,” in 2022 IEEE Int. Mediterr. Conf. Commun. Netw. MeditCom, Athens, Greece, Sep. 2022, pp. 1–6.
  19. M. Takahashi et al., “DBF-based fusion control of transmit power and beam directivity for flexible resource allocation in HTS communication system toward B5G,” IEEE Trans. Wireless Commun., vol. 21, no. 1, pp. 95–105, Jan. 2022.
  20. A. Wang et al., “Joint optimization of beam-hopping design and NOMA-assisted transmission for flexible satellite systems,” IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 8846–8858, Oct. 2022.
  21. X. Hu et al., “Dynamic beam hopping method based on multi-objective deep reinforcement learning for next generation satellite broadband systems,” IEEE Trans. on Broadcast., vol. 66, no. 3, pp. 630–646, Sep. 2020.
  22. J. Chu et al., “Robust design for NOMA-based multibeam LEO satellite internet of things,” IEEE Internet Things J., vol. 8, no. 3, pp. 1959–1970, Feb. 2021.
  23. W. U. Khan et al., “Rate splitting multiple access for next generation cognitive radio enabled LEO satellite networks,” IEEE Trans. Wireless Commun., vol. 22, no. 11, pp. 8423–8435, Nov. 2023.
  24. M. Sheng et al., “Toward a flexible and reconfigurable broadband satellite network: resource management architecture and strategies,” IEEE Wireless Commun., vol. 24, no. 4, pp. 127–133, Aug. 2017.
  25. X. Cao et al., “Edge-assisted multi-layer offloading optimization of LEO satellite-terrestrial integrated networks,” IEEE J. Select. Areas Commun., vol. 41, no. 2, pp. 381–398, Feb. 2023.
  26. Q. Huang et al., “Energy efficient beamforming schemes for satellite-aerial-terrestrial networks,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3863–3875, Jun. 2020.
  27. J. Zhao et al., “Spectrum allocation and power control for non-orthogonal multiple access in HetNets,” IEEE Trans. Wireless Commun., vol. 16, no. 9, pp. 5825–5837, Sep. 2017.
  28. L. Özbakir et al., “Bees algorithm for generalized assignment problem,” Appl. Math. Comput., vol. 215, no. 11, pp. 3782–3795, Feb. 2010.
  29. Y. Gu et al., “Matching theory for future wireless networks: fundamentals and applications,” IEEE Commun. Mag., vol. 53, no. 5, pp. 52–59, May 2015.
  30. E. Bodine-Baron et al., “Peer effects and stability in matching markets,” in Int. Symp. Algorithmic Game Theory, Amalfi, Italy, Oct. 2011, pp. 117–129.
  31. W. Ni et al., “Resource allocation for multi-cell IRS-aided NOMA networks,” IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4253–4268, Jul. 2021.
  32. J. Papandriopoulos et al., “SCALE: a low-complexity distributed protocol for spectrum balancing in multiuser DSL networks,” IEEE Trans. Inform. Theory, vol. 55, no. 8, pp. 3711–3724, Aug. 2009.
  33. N. Pachler et al., “An updated comparison of four low earth orbit satellite constellation systems to provide global broadband,” in 2021 IEEE Int. Conf. Commun. Workshop ICC Workshop.   Montreal, QC, Canada: IEEE, Jun. 2021, pp. 1–7.
  34. R. K. Jain et al., “A quantitative measure of fairness and discrimination,” East. Res. Lab. Digit. Equip. Corp. Hudson MA, vol. 21, pp. 1–38, Dec. 1984.
Citations (8)

Summary

We haven't generated a summary for this paper yet.