Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
84 tokens/sec
Gemini 2.5 Pro Premium
49 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
476 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Could Sample Variance be Responsible for the Parity-Violating Signal Seen in the BOSS Galaxy Survey? (2401.09523v1)

Published 17 Jan 2024 in astro-ph.CO, astro-ph.GA, gr-qc, hep-ph, and hep-th

Abstract: Recent works have uncovered an excess signal in the parity-odd four-point correlation function measured from the BOSS spectroscopic galaxy survey. If physical in origin, this could indicate evidence for new parity-breaking processes in the scalar sector, most likely from inflation. At heart, these studies compare the observed four-point correlator to the distribution obtained from parity-conserving mock galaxy surveys; if the simulations underestimate the covariance of the data, noise fluctuations may be misinterpreted as a signal. To test this, we reanalyse the BOSS CMASS + LOWZ parity-odd dataset with the noise distribution modeled using the newly developed GLAM-Uchuu suite of mocks. These comprise full N-body simulations that follow the evolution of $20003$ dark matter particles in a $\Lambda$CDM universe, and represent a significant upgrade compared to the formerly MultiDark-Patchy mocks, which were based on an alternative (non N-body) gravity solver. We find no significant evidence for parity-violation in the BOSS dataset (with a baseline detection significance of $1.4\sigma$), suggesting that the former signal ($>3.5\sigma$ with our data cuts) could be caused by an underestimation of the covariance in MultiDark-Patchy. The significant differences between results obtained with the two sets of BOSS-calibrated galaxy catalogs showcases the heightened sensitivity of beyond-two-point analyses to the treatment of non-linear effects and indicates that previous constraints may suffer from large systematic uncertainties.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. J. R. Eskilt, Astron. Astrophys. 662, A10 (2022), arXiv:2201.13347 [astro-ph.CO] .
  2. J. R. Eskilt and E. Komatsu,   (2022), arXiv:2205.13962 [astro-ph.CO] .
  3. P. Diego-Palazuelos et al., Phys. Rev. Lett. 128, 091302 (2022), arXiv:2201.07682 [astro-ph.CO] .
  4. E. Komatsu, Nature Rev. Phys. 4, 452 (2022), arXiv:2202.13919 [astro-ph.CO] .
  5. Y. Minami and E. Komatsu, Phys. Rev. Lett. 125, 221301 (2020), arXiv:2011.11254 [astro-ph.CO] .
  6. P. Diego-Palazuelos et al., JCAP 01, 044 (2023), arXiv:2210.07655 [astro-ph.CO] .
  7. M. S. Turner and L. M. Widrow, Phys. Rev. D 37, 2743 (1988).
  8. O. H. E. Philcox, Phys. Rev. D 106, 063501 (2022), arXiv:2206.04227 [astro-ph.CO] .
  9. D. Jeong and M. Kamionkowski, Phys. Rev. Lett. 108, 251301 (2012), arXiv:1203.0302 [astro-ph.CO] .
  10. M. Shiraishi, Phys. Rev. D 94, 083503 (2016), arXiv:1608.00368 [astro-ph.CO] .
  11. V. Gluscevic and M. Kamionkowski, Phys. Rev. D 81, 123529 (2010), arXiv:1002.1308 [astro-ph.CO] .
  12. O. H. E. Philcox and Z. Slepian, Proc. Nat. Acad. Sci. 119, e2111366119 (2022), arXiv:2106.10278 [astro-ph.IM] .
  13. O. H. E. Philcox and Z. Slepian, arXiv e-prints , arXiv:2106.10278 (2021), arXiv:2106.10278 [astro-ph.IM] .
  14. R. N. Cahn and Z. Slepian, J. Phys. A 56, 325204 (2023), arXiv:2010.14418 [astro-ph.CO] .
  15. O. H. E. Philcox,   (2023), arXiv:2303.12106 [astro-ph.CO] .
  16. O. H. E. Philcox and M. Shiraishi,   (2023a), arXiv:2308.03831 [astro-ph.CO] .
  17. O. H. E. Philcox and M. Shiraishi,   (2023b), arXiv:2312.12498 [astro-ph.CO] .
  18. S. Alexander and N. Yunes, Phys. Rept. 480, 1 (2009), arXiv:0907.2562 [hep-th] .
  19. S. H. S. Alexander, Int. J. Mod. Phys. D 25, 1640013 (2016), arXiv:1604.00703 [hep-th] .
  20. N. Bartolo and G. Orlando, JCAP 07, 034 (2017), arXiv:1706.04627 [astro-ph.CO] .
  21. L. Sorbo, JCAP 06, 003 (2011), arXiv:1101.1525 [astro-ph.CO] .
  22. S. H. S. Alexander, Phys. Lett. B 660, 444 (2008), arXiv:hep-th/0601034 .
  23. L. Bordin and G. Cabass, JCAP 07, 014 (2020), arXiv:2004.00619 [astro-ph.CO] .
  24. M. Shiraishi, JCAP 06, 015 (2012), arXiv:1202.2847 [astro-ph.CO] .
  25. P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589 [astro-ph.CO] .
  26. A. J. Ross et al. (BOSS), Mon. Not. Roy. Astron. Soc. 464, 1168 (2017), arXiv:1607.03145 [astro-ph.CO] .
  27. S. D. Landy and A. S. Szalay, ApJ 412, 64 (1993).
  28. E. Sellentin and A. F. Heavens, MNRAS 464, 4658 (2017), arXiv:1609.00504 [astro-ph.CO] .
Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.