Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning with Geometry: Including Riemannian Geometric Features in Coefficient of Pressure Prediction on Aircraft Wings (2401.09452v2)

Published 22 Dec 2023 in cs.LG and cs.AI

Abstract: We propose to incorporate Riemannian geometric features from the geometry of aircraft wing surfaces in the prediction of coefficient of pressure (CP) on the aircraft wing. Contrary to existing approaches that treat the wing surface as a flat object, we represent the wing as a piecewise smooth manifold and calculate a set of Riemannian geometric features (Riemannian metric, connection, and curvature) over points of the wing. Combining these features in neighborhoods of points on the wing with coordinates and flight conditions gives inputs to a deep learning model that predicts CP distributions. Experimental results show that the method with incorporation of Riemannian geometric features, compared to state-of-the-art Deep Attention Network (DAN), reduces the predicted mean square error (MSE) of CP by an average of 15.00% for the DLR-F11 aircraft test set.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. R. Mukesh, K. Lingadurai, and U. Selvakumar, “Airfoil shape optimization using non-traditional optimization technique and its validation,” Journal of King Saud University-Engineering Sciences, vol. 26, no. 2, pp. 191–197, 2014.
  2. N. Vu and J. Lee, “Aerodynamic design optimization of helicopter rotor blades including airfoil shape for forward flight,” Aerospace Science and Technology, vol. 42, pp. 106–117, 2015.
  3. G. Liu, F. Gao, and W.-H. Liao, “Design and optimization of a magnetorheological damper based on b-spline curves,” Mechanical Systems and Signal Processing, vol. 178, p. 109279, 2022.
  4. B. Song, Z. Wang, and L. Zou, “An improved pso algorithm for smooth path planning of mobile robots using continuous high-degree bezier curve,” Applied Soft Computing, vol. 100, p. 106960, 2021.
  5. M. Saporito, A. Da Ronch, N. Bartoli, and S. Defoort, “Robust multidisciplinary analysis and optimization for conceptual design of flexible aircraft under dynamic aeroelastic constraints,” Aerospace Science and Technology, vol. 138, p. 108349, 2023.
  6. Q. Zhao, “Airfoil inverse design based on particle swarm optimization algorithm,” in Fifth International Conference on Computer Information Science and Artificial Intelligence (CISAI 2022), vol. 12566.   SPIE, 2023, pp. 1080–1085.
  7. E. Abele and M. Fujara, “Simulation-based twist drill design and geometry optimization,” CIRP annals, vol. 59, no. 1, pp. 145–150, 2010.
  8. G. Papacharalampous, H. Tyralis, S. M. Papalexiou, A. Langousis, S. Khatami, E. Volpi, and S. Grimaldi, “Global-scale massive feature extraction from monthly hydroclimatic time series: Statistical characterizations, spatial patterns and hydrological similarity,” Science of the Total Environment, vol. 767, p. 144612, 2021.
  9. N. Decat, J. Walter, Z. H. Koh, P. Sribanditmongkol, B. D. Fulcher, J. M. Windt, T. Andrillon, and N. Tsuchiya, “Beyond traditional sleep scoring: Massive feature extraction and data-driven clustering of sleep time series,” Sleep Medicine, vol. 98, pp. 39–52, 2022.
  10. H. Zhang, M. Hao, H. Wu, H.-F. Ting, Y. Tang, W. Xi, and Y. Wei, “Protein residue contact prediction based on deep learning and massive statistical features from multi-sequence alignment,” Tsinghua Science and Technology, vol. 27, no. 5, pp. 843–854, 2022.
  11. D. Hegde, J. M. J. Valanarasu, and V. M. Patel, “Clip goes 3d: Leveraging prompt tuning for language grounded 3d recognition,” arXiv preprint arXiv:2303.11313, 2023.
  12. S. Qi, X. Ning, G. Yang, L. Zhang, P. Long, W. Cai, and W. Li, “Review of multi-view 3d object recognition methods based on deep learning,” Displays, vol. 69, p. 102053, 2021.
  13. S. Y. Alaba and J. E. Ball, “Deep learning-based image 3-d object detection for autonomous driving,” IEEE Sensors Journal, vol. 23, no. 4, pp. 3378–3394, 2023.
  14. S. Yang, S. Lee, and K. Yee, “Inverse design optimization framework via a two-step deep learning approach: application to a wind turbine airfoil,” Engineering with Computers, vol. 39, no. 3, pp. 2239–2255, 2023.
  15. X. Du, P. He, and J. R. Martins, “A b-spline-based generative adversarial network model for fast interactive airfoil aerodynamic optimization,” in AIAA Scitech 2020 Forum, 2020, p. 2128.
  16. R. Zahn, A. Weiner, and C. Breitsamter, “Prediction of wing buffet pressure loads using a convolutional and recurrent neural network framework,” CEAS Aeronautical Journal, pp. 1–17, 2023.
  17. D. Hines and P. Bekemeyer, “Graph neural networks for the prediction of aircraft surface pressure distributions,” Aerospace Science and Technology, vol. 137, p. 108268, 2023.
  18. Y. Xiang, L. Hu, G. Zhang, J. Zhang, and W. Wang, “A manifold-based airfoil geometric-feature extraction and discrepant data fusion learning method,” IEEE Transactions on Aerospace and Electronic Systems, 2023.
  19. Z. Deng, J. Wang, H. Liu, H. Xie, B. Li, M. Zhang, T. Jia, Y. Zhang, Z. Wang, and B. Dong, “Prediction of transonic flow over supercritical airfoils using geometric-encoding and deep-learning strategies,” arXiv preprint arXiv:2303.03695, 2023.
  20. Y. Wang, K. Shimada, and A. Barati Farimani, “Airfoil gan: encoding and synthesizing airfoils for aerodynamic shape optimization,” Journal of Computational Design and Engineering, vol. 10, no. 4, pp. 1350–1362, 2023.
  21. J. G. Coder, “Overflow analysis of the dlr-f11 high-lift configuration including transition modeling,” Journal of Aircraft, vol. 52, no. 4, pp. 1082–1097, 2015.
  22. G. Catalani, D. Costero, M. Bauerheim, L. Zampieri, V. Chapin, N. Gourdain, and P. Baqué, “A comparative study of learning techniques for the compressible aerodynamics over a transonic rae2822 airfoil,” Computers & Fluids, vol. 251, p. 105759, 2023.
  23. S. J. Jacob, M. Mrosek, C. Othmer, and H. Köstler, “Deep learning for real-time aerodynamic evaluations of arbitrary vehicle shapes,” arXiv preprint arXiv:2108.05798, 2021.
  24. J. Li and M. Zhang, “On deep-learning-based geometric filtering in aerodynamic shape optimization,” Aerospace Science and Technology, vol. 112, p. 106603, 2021.
  25. K. Zuo, Z. Ye, W. Zhang, X. Yuan, and L. Zhu, “Fast aerodynamics prediction of laminar airfoils based on deep attention network,” Physics of Fluids, vol. 35, no. 3, 2023.
  26. M. Selig, “Uiuc airfoil data site, department of aerospace engineering,” Urbana, Illinois: University of Illinois,(Jan 2007) www. ae. uiuc. edu/m-selig/ads. html. RL Fearn,“Airfoil Aerodynamics Using Panel Methods,” The Mathematica Journal, pp. 10–4, 2011.
  27. K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu, Y. Xu et al., “A survey on vision transformer,” IEEE transactions on pattern analysis and machine intelligence, vol. 45, no. 1, pp. 87–110, 2022.
  28. X. Qu, Z. Liu, B. Yu, W. An, X. Liu, and H. Lyu, “Predicting pressure coefficients of wing surface based on the transfer of spatial dependency,” AIP Advances, vol. 12, no. 5, 2022.
  29. R. Lei, J. Bai, H. Wang, B. Zhou, and M. Zhang, “Deep learning based multistage method for inverse design of supercritical airfoil,” Aerospace Science and Technology, vol. 119, p. 107101, 2021.
  30. F. Xiong, L. Zhang, H. Xiao, and R. Chengkun, “A point cloud deep neural network metamodel method for aerodynamic prediction,” Chinese Journal of Aeronautics, vol. 36, no. 4, pp. 92–103, 2023.
  31. B. Zhang, “Airfoil-based convolutional autoencoder and long short-term memory neural network for predicting coherent structures evolution around an airfoil,” Computers & Fluids, vol. 258, p. 105883, 2023.
  32. Q. Chen, P. Pope, and M. Fuge, “Learning airfoil manifolds with optimal transport,” in AIAA SCITECH 2022 Forum, 2022, p. 2352.
  33. A. Van Slooten and M. Fuge, “Effect of optimal geometries and performance parameters on airfoil latent space dimension,” in International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 86229.   American Society of Mechanical Engineers, 2022, p. V03AT03A005.
  34. Y. Wang, K. Shimada, and A. B. Farimani, “Airfoil gan: Encoding and synthesizing airfoils foraerodynamic-aware shape optimization,” arXiv preprint arXiv:2101.04757, 2021.
  35. L. Hu, Y. Xiang, J. Zhang, Z. Shi, and W. Wang, “Aerodynamic data predictions based on multi-task learning,” Applied Soft Computing, vol. 116, p. 108369, 2022.
  36. J. Zhang, G. Zhang, Y. Cheng, L. Hu, Y. Xiang, and W. Wang, “A multi-task learning method for large discrepant aerodynamic data,” Acta Aerodynamica Sinica, vol. 40, pp. 64–72, 2022.
  37. Z. Tang, “Metric,” in Fundamentals of Riemannian geometry in Chinese, 1st ed., C. Yue, Ed.   Beijing: Beijing Normal University Publishing House, 2011, pp. 29–33.
  38. w. Chen, “Riemannian metric,” in Introduction to Riemann geometry in Chinese, 1st ed., j. Zhang, Ed.   Beijing: Beijing Normal University Publishing House, 2004, pp. 83–90.
  39. S. Sommer and A. Bronstein, “Horizontal flows and manifold stochastics in geometric deep learning,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 2, pp. 811–822, 2020.
  40. A. T. Norkvist, “Projective real calculi and levi-civita connections,” arXiv preprint arXiv:2309.05191, 2023.
  41. G. G. van der Vleuten, F. Toschi, W. H. Schilders, and A. Corbetta, “Stochastic fluctuations of diluted pedestrian dynamics along curved paths,” arXiv preprint arXiv:2306.12090, 2023.
  42. V. Khatsymovsky, “On the discrete christoffel symbols,” International Journal of Modern Physics A, vol. 34, no. 30, p. 1950186, 2019.
  43. S. Ivanov and N. Stanchev, “The riemannian bianchi identities of metric connections with skew torsion and generalized ricci solitons,” arXiv preprint arXiv:2307.03986, 2023.
  44. H. Frost, C. R. Mafra, and L. Mason, “A lie bracket for the momentum kernel,” Communications in Mathematical Physics, vol. 402, no. 2, pp. 1307–1343, 2023.
  45. O. Munteanu and J. Wang, “Comparison theorems for 3d manifolds with scalar curvature bound,” International Mathematics Research Notices, vol. 2023, no. 3, pp. 2215–2242, 2023.
  46. J. Zhang, G. Zhang, Y. Cheng, L. Hu, Y. Xiang, and W. Wang, “A multi-task learning method for large discrepant aerodynamic data,” Acta Aerodynamica Sinica, vol. 40, no. 6, pp. 64–72, 2022.
  47. D. Xin, J. Zeng, and K. Xue, “Surrogate drag model of non-spherical fragments based on artificial neural networks,” Powder Technology, vol. 404, p. 117412, 2022.
  48. M. Yamin and Z. A. K. Ramadhan, “Neural network approach for predicting aerodynamic performance of naca airfoil at low reynolds number,” Jurnal Polimesin, vol. 20, no. 2, pp. 190–193, 2022.
  49. A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv preprint arXiv:1803.08375, 2018.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com