Joining Forces for Pathology Diagnostics with AI Assistance: The EMPAIA Initiative (2401.09450v2)
Abstract: Over the past decade, AI methods in pathology have advanced substantially. However, integration into routine clinical practice has been slow due to numerous challenges, including technical and regulatory hurdles in translating research results into clinical diagnostic products and the lack of standardized interfaces. The open and vendor-neutral EMPAIA initiative addresses these challenges. Here, we provide an overview of EMPAIA's achievements and lessons learned. EMPAIA integrates various stakeholders of the pathology AI ecosystem, i.e., pathologists, computer scientists, and industry. In close collaboration, we developed technical interoperability standards, recommendations for AI testing and product development, and explainability methods. We implemented the modular and open-source EMPAIA platform and successfully integrated 14 AI-based image analysis apps from 8 different vendors, demonstrating how different apps can use a single standardized interface. We prioritized requirements and evaluated the use of AI in real clinical settings with 14 different pathology laboratories in Europe and Asia. In addition to technical developments, we created a forum for all stakeholders to share information and experiences on digital pathology and AI. Commercial, clinical, and academic stakeholders can now adopt EMPAIA's common open-source interfaces, providing a unique opportunity for large-scale standardization and streamlining of processes. Further efforts are needed to effectively and broadly establish AI assistance in routine laboratory use. To this end, a sustainable infrastructure, the non-profit association EMPAIA International, has been established to continue standardization and support broad implementation and advocacy for an AI-assisted digital pathology future.
- doi:10.1371/journal.pone.0253876.
- doi:10.1007/s00428-015-1869-6.
- doi:10.1093/bjd/ljad113.058.
- doi:10.5858/arpa.2014-0559-oa.
- doi:10.1001/jamanetworkopen.2019.4337.
- doi:10.1007/s00428-020-02894-6.
- doi:10.5858/arpa.2018-0514-oa.
- doi:10.1111/his.13691.
- doi:10.5858/arpa.2018-0541-oa.
- doi:10.4103/jpi.jpi_67_20.
- doi:10.1038/s41379-021-00919-2.
- doi:10.1016/j.jpi.2022.100138.
- doi:10.1007/s00292-021-01029-1.
- doi:10.4103/jpi.jpi_84_20.
- EMPAIA Consortium, What is EMPAIA? (2023). URL https://www.empaia.org/en
- doi:10.1038/s41379-022-01147-y.
- doi:10.1016/j.cmpb.2021.106596.
- doi:10.1016/j.jpi.2022.100103.
- EMPAIA Consortium, EMPAIA developer portal (2023). URL https://developer.empaia.org/
- doi:10.1016/j.future.2022.10.025.
- The MIT license (2023). URL https://opensource.org/license/mit/
- EMPAIA community, google Group (2023). URL https://groups.google.com/g/empaia
- doi:10.4103/jpi.jpi_98_20.
- IHE PaLM Technical Committee in collaboration with DICOM WG26, IHE PaLM technical framework supplement – digital pathology workflow - image acquisition (DPIA) (2020). URL https://www.ihe.net/uploadedFiles/Documents/PaLM/IHE_PaLM_Suppl_DPIA.pdf
- EMPAIA Consortium, EMPAIA portal (2023). URL https://portal.empaia.org/marketplace
- doi:10.1093/ehjdh/ztad016.
- doi:10.1016/s2589-7500(21)00211-9.
- doi:10.1038/s41467-023-36173-0.
- doi:10.1016/j.esmoop.2022.100400.
- doi:10.1016/s2589-7500(23)00219-4.
- doi:10.1177/20552076231171475.
- High-Level Expert Group on Artificial Intelligence, Ethics guidelines for trustworthy AI (2019). URL https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
- Proposal for a regulation of the European parliament and of the council laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union legislative acts (2021). URL https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
- doi:10.1007/s10994-022-06229-1.
- doi:10.1016/j.future.2022.03.009.
- doi:10.1002/cjp2.322.
- doi:10.48550/ARXIV.2208.04579.
- Model-agnostic explanation library (MAX Lib) (2023). URL https://github.com/dailab/MAXi-XAI-lib
- European Commission, Regulation (EU) 2017/746 of the European Parilament and of the Council of 5 April 2017 on in vitro diagnostic medical devices and repealing Directive 98/79/EC and Commission Decision 2010/227/EU (2017). URL https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0746&from=EN
- Code of federal regulations. URL https://www.ecfr.gov/
- EMPAIA Consortium, Market survey (2023). URL https://portal.empaia.org/clearances
- doi:10.1109/CCGrid54584.2022.00124.
- doi:10.1016/j.labinv.2023.100244.
- doi:10.1007/978-3-030-72188-6_15.
- doi:10.1007/978-3-031-12807-3_11.
- doi:10.1016/j.imu.2022.100853.
- doi:10.1007/978-3-030-99838-7_12.
- EMPAIA Consortium, ECDP2022 hands-on workshop (2023). URL https://www.empaia.org/workshops
- EMPAIA Consortium, ECDP2023 hands-on workshop (2023). URL https://www.empaia.org/ecdp2023-hands-on-worksho
- Norman Zerbe (5 papers)
- Lars Ole Schwen (4 papers)
- Christian Geißler (5 papers)
- Katja Wiesemann (1 paper)
- Tom Bisson (3 papers)
- Peter Boor (5 papers)
- Rita Carvalho (4 papers)
- Michael Franz (13 papers)
- Christoph Jansen (17 papers)
- Tim-Rasmus Kiehl (3 papers)
- Björn Lindequist (1 paper)
- Nora Charlotte Pohlan (1 paper)
- Sarah Schmell (2 papers)
- Klaus Strohmenger (2 papers)
- Falk Zakrzewski (3 papers)
- Markus Plass (5 papers)
- Michael Takla (1 paper)
- Tobias Küster (1 paper)
- André Homeyer (6 papers)
- Peter Hufnagl (4 papers)