Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feature-aware ultra-low dimensional reduction of real networks (2401.09368v2)

Published 17 Jan 2024 in physics.soc-ph and cs.SI

Abstract: In existing models and embedding methods of networked systems, node features describing their qualities are usually overlooked in favor of focusing solely on node connectivity. This study introduces $FiD$-Mercator, a model-based ultra-low dimensional reduction technique that integrates node features with network structure to create $D$-dimensional maps of complex networks in a hyperbolic space. This embedding method efficiently uses features as an initial condition, guiding the search of nodes' coordinates towards an optimal solution. The research reveals that downstream task performance improves with the correlation between network connectivity and features, emphasizing the importance of such correlation for enhancing the description and predictability of real networks. Simultaneously, hyperbolic embedding's ability to reproduce local network properties remains unaffected by the inclusion of features. The findings highlight the necessity for developing network embedding techniques capable of exploiting such correlations to optimize both network structure and feature association jointly in the future.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. R. B. Hays, Journal of personality and social psychology 48, 909 (1985).
  2. B. J. Bigelow, Child Development 48, 246 (1977), full publication date: Mar., 1977.
  3. A. Allard and M. Á. Serrano, PLOS Comput. Biol. 16, e1007584 (2020).
  4. M. E. J. Newman and A. Clauset, Nature Communications 7, 11863 (2016).
  5. S. Emmons and P. J. Mucha, Phys. Rev. E 100, 022301 (2019).
  6. O. Artime and M. De Domenico, Nature Communications 12, 2478 (2021).
  7. M. Belkin and P. Niyogi, in Advances in neural information processing systems (2002) pp. 585–591.
  8. T. N. Kipf and M. Welling, in International Conference on Learning Representations (2017).
  9. L. Lü and T. Zhou, Physica A: Statistical Mechanics and its Applications 390, 1150 (2011).
  10. R. R. Sokal and C. D. Michener, University of Kansas science bulletin 38, 1409 (1958).
  11. B. Rozemberczki and R. Sarkar, in Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ’20) (ACM, 2020) p. 1325–1334.
Citations (2)

Summary

We haven't generated a summary for this paper yet.