Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cooperative two-photon lasing in two Quantum Dots embedded inside Photonic microcavity (2401.09341v1)

Published 17 Jan 2024 in quant-ph and cond-mat.other

Abstract: We propose cooperative two-photon lasing in two quantum dots coupled to a single mode photonic crystal cavity. We consider both quantum dots are driven either incoherently or coherently using external pump. We incorporate exciton-phonon coupling using polaron transformed master equation. Using quantum laser theory, single and multi-photon excess emission (difference between emission and absorption) into cavity mode are investigated. The single and two-photon excess emission contribute to cavity photons, predominantly. Varying the pump strength can lead to single-photon excess emission change from negative to positive and thus by appropriately selecting pump strength single-photon excess emission can be made negligible.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. R. H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev. 93, 99 (1954).
  2. M. Gross and S. Haroche, Superradiance: An essay on the theory of collective spontaneous emission, Physics reports 93, 301 (1982).
  3. V. V. Temnov and U. Woggon, Photon statistics in the cooperative spontaneous emission, Optics express 17, 5774 (2009).
  4. R. DeVoe and R. Brewer, Observation of superradiant and subradiant spontaneous emission of two trapped ions, Physical review letters 76, 2049 (1996).
  5. S.-Y. Zhu and X.-S. Li, Quantum theory of a two-photon laser, Phys. Rev. A 36, 3889 (1987).
  6. A. W. Boone and S. Swain, Effective hamiltonians and the two-photon laser, Quantum Optics: Journal of the European Optical Society Part B 1, 27 (1989).
  7. A. W. Boone and S. Swain, Theory of the degenerate two-photon laser, Phys. Rev. A 41, 343 (1990).
  8. M. Lewenstein, Y. Zhu, and T. W. Mossberg, Two-photon gain and lasing in strongly driven two-level atoms, Phys. Rev. Lett. 64, 3131 (1990).
  9. C. K. Law and J. H. Eberly, Response of a two-level atom to a classical field and a quantized cavity field of different frequencies, Phys. Rev. A 43, 6337 (1991).
  10. J. Zakrzewski, M. Lewenstein, and T. W. Mossberg, Theory of dressed-state lasers. i. effective hamiltonians and stability properties, Phys. Rev. A 44, 7717 (1991).
  11. P. Pathak and S. Hughes, Coherent generation of time-bin entangled photon pairs using the biexciton cascade and cavity-assisted piecewise adiabatic passage, Physical Review B 83, 245301 (2011).
  12. B.-y. Zhou and G.-x. Li, Ground-state cooling of a nanomechanical resonator via single-polariton optomechanics in a coupled quantum-dot–cavity system, Phys. Rev. A 94, 033809 (2016).
  13. A. Kiraz, M. Atatüre, and A. Imamoğlu, Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing, Phys. Rev. A 69, 032305 (2004).
  14. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett. 96, 010401 (2006).
  15. P. e. Senellart, High-performance semiconductor quantum-dot single-photon sources, Nature Nanotechnology 12, 1026 (2017).
  16. P. Yao, V. Manga Rao, and S. Hughes, On-chip single photon sources using planar photonic crystals and single quantum dots, Laser & Photonics Reviews 4, 499 (2010).
  17. A. Nazir and D. P. McCutcheon, Modelling exciton–phonon interactions in optically driven quantum dots, Journal of Physics: Condensed Matter 28, 103002 (2016).
  18. C. Roy and S. Hughes, Influence of electron–acoustic-phonon scattering on intensity power broadening in a coherently driven quantum-dot–cavity system, Physical Review X 1, 021009 (2011).
  19. E. del Valle, F. P. Laussy, and C. Tejedor, Luminescence spectra of quantum dots in microcavities. ii. fermions, Phys. Rev. B 79, 235326 (2009).
  20. G. D. Mahan, Exactly solvable models, in Many-Particle Physics (Springer US, Boston, MA, 1990) pp. 239–378.
  21. D. Xu and J. Cao, Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach, Frontiers of Physics 11, 1 (2016).
  22. H. J. Carmichael, Statistical methods in quantum optics 1: master equations and Fokker-Planck equations, Vol. 1 (Springer Science & Business Media, 1999).
  23. S. M. Tan, A quantum optics toolbox for matlab 5, J. Opt. B: Quantum Semiclass. Opt 1, 161 (1999).
  24. M. O. Scully and W. E. Lamb, Quantum theory of an optical maser. i. general theory, Phys. Rev. 159, 208 (1967).
  25. Y. Mu and C. Savage, One-atom lasers, Physical Review A 46, 5944 (1992).
  26. J. Verma, H. Singh, and P. Pathak, Effect of phonon coupling on the cooperative two-photon emission from two quantum dots, Physical Review B 98, 125305 (2018).
  27. G.-x. Li, M. Luo, and Z. Ficek, Thresholdless dressed-atom laser in a photonic band-gap material, Phys. Rev. A 79, 053847 (2009).
  28. U. Hohenester, Cavity quantum electrodynamics with semiconductor quantum dots: Role of phonon-assisted cavity feeding, Phys. Rev. B 81, 155303 (2010).
  29. M.-O. Pleinert, J. von Zanthier, and G. S. Agarwal, Hyperradiance from collective behavior of coherently driven atoms, Optica 4, 779 (2017).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com