Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Siamese Meets Diffusion Network: SMDNet for Enhanced Change Detection in High-Resolution RS Imagery (2401.09325v1)

Published 17 Jan 2024 in cs.CV

Abstract: Recently, the application of deep learning to change detection (CD) has significantly progressed in remote sensing images. In recent years, CD tasks have mostly used architectures such as CNN and Transformer to identify these changes. However, these architectures have shortcomings in representing boundary details and are prone to false alarms and missed detections under complex lighting and weather conditions. For that, we propose a new network, Siamese Meets Diffusion Network (SMDNet). This network combines the Siam-U2Net Feature Differential Encoder (SU-FDE) and the denoising diffusion implicit model to improve the accuracy of image edge change detection and enhance the model's robustness under environmental changes. First, we propose an innovative SU-FDE module that utilizes shared weight features to capture differences between time series images and identify similarities between features to enhance edge detail detection. Furthermore, we add an attention mechanism to identify key coarse features to improve the model's sensitivity and accuracy. Finally, the diffusion model of progressive sampling is used to fuse key coarse features, and the noise reduction ability of the diffusion model and the advantages of capturing the probability distribution of image data are used to enhance the adaptability of the model in different environments. Our method's combination of feature extraction and diffusion models demonstrates effectiveness in change detection in remote sensing images. The performance evaluation of SMDNet on LEVIR-CD, DSIFN-CD, and CDD datasets yields validated F1 scores of 90.99%, 88.40%, and 88.47%, respectively. This substantiates the advanced capabilities of our model in accurately identifying variations and intricate details.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. M. Amani, B. Brisco, S. Mahdavi, A. Ghorbanian, A. Moghimi, E. R. DeLancey, M. Merchant, R. Jahncke, L. Fedorchuk, A. Mui, T. Fisette, M. Kakooei, S. A. Ahmadi, B. Leblon, and A. LaRocque, “Evaluation of the landsat-based canadian wetland inventory map using multiple sources: Challenges of large-scale wetland classification using remote sensing,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 32–52, 2021.
  2. B. Tu, W. He, W. He, X. Ou, and A. Plaza, “Hyperspectral classification via global-local hierarchical weighting fusion network,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 184–200, 2022.
  3. G. Yao, W. Zhou, M. Liu, Q. Xu, H. Wang, J. Li, and Y. Ju, “An empirical study of the convolution neural networks based detection on object with ambiguous boundary in remote sensing imagery—a case of potential loess landslide,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 323–338, 2022.
  4. F. Safavi and M. Rahnemoonfar, “Comparative study of real-time semantic segmentation networks in aerial images during flooding events,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp. 15–31, 2023.
  5. S. M. M. Nejad, D. Abbasi-Moghadam, A. Sharifi, N. Farmonov, K. Amankulova, and M. Lászlź, “Multispectral crop yield prediction using 3d-convolutional neural networks and attention convolutional lstm approaches,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 16, pp. 254–266, 2023.
  6. J. Hu, Z. Huang, F. Shen, D. He, and Q. Xian, “A bag of tricks for fine-grained roof extraction,” in IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium.   IEEE, 2023.
  7. C. Qiao, F. Shen, X. Wang, R. Wang, F. Cao, S. Zhao, and C. Li, “A novel multi-frequency coordinated module for sar ship detection,” in 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI).   IEEE, 2022, pp. 804–811.
  8. J. Hu, Z. Huang, F. Shen, D. He, and Q. Xian, “A rubust method for roof extraction and height estimation,” in IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium.   IEEE, 2023.
  9. W. Weng, W. Ling, F. Lin, J. Ren, and F. Shen, “A novel cross frequency-domain interaction learning for aerial oriented object detection,” in Chinese Conference on Pattern Recognition and Computer Vision (PRCV).   Springer, 2023.
  10. H. Chen, Z. Qi, and Z. Shi, “Remote sensing image change detection with transformers,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2021.
  11. Y. Liu, S. Nishiyama, and T. Yano, “Analysis of four change detection algorithms in bi-temporal space with a case study,” International Journal of Remote Sensing, vol. 25, no. 11, pp. 2121–2139, 2004.
  12. L. Bruzzone and D. F. Prieto, “Automatic analysis of the difference image for unsupervised change detection,” IEEE Transactions on Geoscience and Remote sensing, vol. 38, no. 3, pp. 1171–1182, 2000.
  13. M. Hussain, D. Chen, A. Cheng, H. Wei, and D. Stanley, “Change detection from remotely sensed images: From pixel-based to object-based approaches,” ISPRS Journal of photogrammetry and remote sensing, vol. 80, pp. 91–106, 2013.
  14. W. Shi, M. Zhang, R. Zhang, S. Chen, and Z. Zhan, “Change detection based on artificial intelligence: State-of-the-art and challenges,” Remote Sensing, vol. 12, no. 10, p. 1688, 2020.
  15. F. Shen, J. Zhu, X. Zhu, Y. Xie, and J. Huang, “Exploring spatial significance via hybrid pyramidal graph network for vehicle re-identification,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 8793–8804, 2021.
  16. F. Shen, Y. Xie, J. Zhu, X. Zhu, and H. Zeng, “Git: Graph interactive transformer for vehicle re-identification,” IEEE Transactions on Image Processing, 2023.
  17. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  18. F. Shen, J. Zhu, X. Zhu, J. Huang, H. Zeng, Z. Lei, and C. Cai, “An efficient multiresolution network for vehicle reidentification,” IEEE Internet of Things Journal, vol. 9, no. 11, pp. 9049–9059, 2021.
  19. D. Peng, Y. Zhang, and H. Guan, “End-to-end change detection for high resolution satellite images using improved unet++,” Remote Sensing, vol. 11, no. 11, p. 1382, 2019.
  20. S. Fang, K. Li, J. Shao, and Z. Li, “Snunet-cd: A densely connected siamese network for change detection of vhr images,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2021.
  21. H. Chen and Z. Shi, “A spatial-temporal attention-based method and a new dataset for remote sensing image change detection,” Remote Sensing, vol. 12, no. 10, p. 1662, 2020.
  22. ——, “A spatial-temporal attention-based method and a new dataset for remote sensing image change detection,” Remote Sensing, vol. 12, no. 10, 2020. [Online]. Available: https://www.mdpi.com/2072-4292/12/10/1662
  23. F. Shen, X. Shu, X. Du, and J. Tang, “Pedestrian-specific bipartite-aware similarity learning for text-based person retrieval,” in Proceedings of the 31th ACM International Conference on Multimedia, 2023.
  24. W. G. C. Bandara and V. M. Patel, “A transformer-based siamese network for change detection,” in IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium.   IEEE, 2022, pp. 207–210.
  25. C. Zhang, L. Wang, S. Cheng, and Y. Li, “Swinsunet: Pure transformer network for remote sensing image change detection,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.
  26. F. Heidary, M. Yazdi, P. Setoodeh, and M. Dehghani, “CTS-Unet : Urban change detection by convolutional Siamese concatenate network with Swin transformer,” Advances in Space Research, Aug. 2023.
  27. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840–6851, 2020.
  28. A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional image generation with clip latents,” arXiv preprint arXiv:2204.06125, vol. 1, no. 2, p. 3, 2022.
  29. P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” CoRR, vol. abs/2105.05233, 2021. [Online]. Available: https://arxiv.org/abs/2105.05233
  30. B. Kawar, M. Elad, S. Ermon, and J. Song, “Denoising diffusion restoration models,” Advances in Neural Information Processing Systems, vol. 35, pp. 23 593–23 606, 2022.
  31. C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi, “Image super-resolution via iterative refinement,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 4, pp. 4713–4726, 2022.
  32. A. Kazerouni, E. K. Aghdam, M. Heidari, R. Azad, M. Fayyaz, I. Hacihaliloglu, and D. Merhof, “Diffusion models for medical image analysis: A comprehensive survey,” arXiv preprint arXiv:2211.07804, 2022.
  33. S. Zhang, M. Ni, L. Wang, W. Ding, S. Chen, and Y. Liu, “A two-stage personalized virtual try-on framework with shape control and texture guidance,” arXiv preprint arXiv:2312.15480, 2023.
  34. F. Shen, H. Ye, J. Zhang, C. Wang, X. Han, and W. Yang, “Advancing pose-guided image synthesis with progressive conditional diffusion models,” arXiv preprint arXiv:2310.06313, 2023.
  35. J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P. Kingma, B. Poole, M. Norouzi, D. J. Fleet et al., “Imagen video: High definition video generation with diffusion models,” arXiv preprint arXiv:2210.02303, 2022.
  36. J. Z. Wu, Y. Ge, X. Wang, S. W. Lei, Y. Gu, Y. Shi, W. Hsu, Y. Shan, X. Qie, and M. Z. Shou, “Tune-a-video: One-shot tuning of image diffusion models for text-to-video generation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 7623–7633.
  37. W. Gedara Chaminda Bandara, N. Gopalakrishnan Nair, and V. M. Patel, “Remote sensing change detection (segmentation) using denoising diffusion probabilistic models,” arXiv e-prints, pp. arXiv–2206, 2022.
  38. S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block attention module,” in Proceedings of the European Conference on Computer Vision (ECCV), September 2018.
  39. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440.
  40. Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A nested u-net architecture for medical image segmentation,” in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4.   Springer, 2018, pp. 3–11.
  41. L. Mou, L. Bruzzone, and X. X. Zhu, “Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 2, pp. 924–935, 2018.
  42. Y. Liu, C. Pang, Z. Zhan, X. Zhang, and X. Yang, “Building change detection for remote sensing images using a dual-task constrained deep siamese convolutional network model,” IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 5, pp. 811–815, 2020.
  43. C. Zhang, P. Yue, D. Tapete, L. Jiang, B. Shangguan, L. Huang, and G. Liu, “A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 166, pp. 183–200, 2020.
  44. F. Shen, X. Du, L. Zhang, and J. Tang, “Triplet contrastive learning for unsupervised vehicle re-identification,” arXiv preprint arXiv:2301.09498, 2023.
  45. C. Zhang, P. Yue, D. Tapete, L. Jiang, B. Shangguan, L. Huang, and G. Liu, “A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 166, pp. 183–200, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0924271620301532
  46. M. Lebedev, Y. V. Vizilter, O. Vygolov, V. Knyaz, and A. Y. Rubis, “Change detection in remote sensing images using conditional adversarial networks.” International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, vol. 42, no. 2, 2018.
  47. R. C. Daudt, B. Le Saux, and A. Boulch, “Fully convolutional siamese networks for change detection,” in 2018 25th IEEE International Conference on Image Processing (ICIP).   IEEE, 2018, pp. 4063–4067.
  48. H. Chen, Z. Qi, and Z. Shi, “Remote sensing image change detection with transformers,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2022.
  49. X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” 2018.
  50. J. Ho, N. Kalchbrenner, D. Weissenborn, and T. Salimans, “Axial attention in multidimensional transformers,” arXiv preprint arXiv:1912.12180, 2019.
  51. Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, “Eca-net: Efficient channel attention for deep convolutional neural networks,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 11 534–11 542.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jia Jia (59 papers)
  2. Geunho Lee (2 papers)
  3. Lyu Zhi (1 paper)
  4. Yuchu He (3 papers)
  5. ZhiBo Wang (48 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.