Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniqueness and nonlinear stability of entire solutions in a parabolic-parabolic chemotaxis models with logistic source on bounded heterogeneous environments (2401.09311v1)

Published 17 Jan 2024 in math.AP

Abstract: This paper studies the asymptotic behavior of solutions of the parabolic-parabolic chemotaxis model with logistic-type sources in heterogeneous bounded domains: \begin{equation*} \label{u-v-eq00} \begin{cases} u_t=\Delta u-\chi\nabla\cdot (u \nabla v)+u\Big(a_0(t,x)-a_1(t,x)u-a_2(t,x)\int_{\Omega}u\Big),\quad x\in \Omega\cr \tau v_t=\Delta v-\lambda v +\mu u,\quad x\in \Omega \cr \frac{\p u}{\p \nu}=\frac{\p v}{\p \nu}=0,\quad x\in\p\Omega. \end{cases}\qquad(\ast) \end{equation*} \noindent We find parameter regions in which the system has a unique positive entire solution, which is globally asymptotically stable. {More precisely under suitable assumptions on the model's parameters, the system has a unique entire positive solution $(u(x,t),v^(x,t))$ such that for any %$t_0\in\RR$ and $u_0 \in C0(\bar{\Omega}),$ $v_0 \in W{1,\infty}(\bar{\Omega})$ with $u_0,v_0\ge 0$ and $u_0\not\equiv 0$, the global classical solution $(u(x,t;t_0,u_0,v_0)$, $v(x,t;t_0,u_0,v_0))$ of $(\ast)$ satisfies $$ \lim_{t \to \infty}\Big(\sup_{t_0 \in \mathbb{R}}|u(\cdot,t;t_0,u_0,v_0)-u*(\cdot,t)|{C0(\bar\Omega)}+\sup{t_0 \in \mathbb{R}}|v(\cdot,t;t_0,u_0,v_0)-v*(\cdot,t)|_{C0(\bar\Omega)}\Big)=0. $$

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com