Dynamical signatures of non-Markovianity in a dissipative-driven qubit (2401.09298v3)
Abstract: We investigate signatures of non-Markovianity in the dynamics of a periodically-driven qubit coupled to a dissipative bosonic environment. We propagate the dynamics of the reduced density matrix of the qubit by integrating the numerically exact hierarchical equations of motion. Non-Markovian features are quantified by comparing on an equal footing the predictions from diverse and complementary approaches to quantum dissipation. In particular, we analyze the distinguishability of quantum states, the decay of the volume accessible to the qubit on the Hilbert space, the negativity of the canonical rates in the generalized Lindblad equation and the relaxation of the memory kernels in the Nakajima-Zwanzig generalized quantum master equation. We study the effects of controlled driving on the coherent dynamics of the system. We show that a suitable external field can offset the ergodic relaxation of time correlation functions, increase distinguishability over time and strengthen non-Markovian effects witnessed by the canonical dissipation channels. We furthermore observe the phenomenon of eternal non-Markovianity for sufficiently small system-bath coupling and we discuss how this can be enhanced by modulating the frequency of the external drive. The present work provides a broad theoretical analysis of quantum dissipation in the framework of open quantum dynamics and quantum information.
- A. P. Babu, J. Tuorila, and T. Ala-Nissila, “State leakage during fast decay and control of a superconducting transmon qubit,” Npj Quantum Inf. 7, 30 (2021).
- T. Ray, A. Ghoshal, D. Rakshit, and U. Sen, “Optimal quantum resource generation in coupled transmons immersed in Markovian baths,” arXiv:2303.16136 (2023).
- L. Verney, R. Lescanne, M. H. Devoret, Z. Leghtas, and M. Mirrahimi, “Structural Instability of Driven Josephson Circuits Prevented by an Inductive Shunt,” Phys. Rev. Appl. 11, 024003 (2019).
- P. M. Harrington, E. J. Mueller, and K. W. Murch, “Engineered dissipation for quantum information science,” Nat. Rev. Phys. 4, 660–671 (2022).
- C. Outeiral, M. Strahm, J. Shi, G. M. Morris, S. C. Benjamin, and C. M. Deane, “The prospects of quantum computing in computational molecular biology,” Wiley Interdiscip. Rev. Comput. Mol. Sci. 11, e1481 (2021).
- F. Ahmed and P. Mähönen, “Quantum Computing for Artificial Intelligence Based Mobile Network Optimization,” in 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (2021) pp. 1128–1133.
- A. Smith, M. S. Kim, F. Pollmann, and J. Knolle, “Simulating quantum many-body dynamics on a current digital quantum computer,” Npj Quantum Inf. 5, 106 (2019).
- H.-P. Breuer, “Foundations and measures of quantum non-Markovianity,” J. Phys. B: At. Mol. Opt. Phys. 45, 154001 (2012).
- Á. Rivas, S. F. Huelga, and M. B. Plenio, “Quantum non-Markovianity: characterization, quantification and detection,” Rep. Prog. Phys. 77, 094001 (2014).
- H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, “Colloquium: Non-Markovian dynamics in open quantum systems,” Rev. Mod. Phys. 88, 021002 (2016).
- M. Schlosshauer, “Decoherence, the measurement problem, and interpretations of quantum mechanics,” Rev. Mod. Phys. 76, 1267–1305 (2005).
- H.-P. Breuer, E.-M. Laine, and J. Piilo, “Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems,” Phys. Rev. Lett. 103, 210401 (2009).
- G. Amato, H.-P. Breuer, and B. Vacchini, “Generalized trace distance approach to quantum non-Markovianity and detection of initial correlations,” Phys. Rev. A 98, 012120 (2018).
- M. J. W. Hall, J. D. Cresser, L. Li, and E. Andersson, “Canonical form of master equations and characterization of non-Markovianity,” Phys. Rev. A 89, 042120 (2014).
- J. D. C. Erika Andersson and M. J. W. Hall, “Finding the Kraus decomposition from a master equation and vice versa,” J. Mod. Opt. 54, 1695–1716 (2007).
- D. Maldonado-Mundo, P. Öhberg, B. W. Lovett, and E. Andersson, “Investigating the generality of time-local master equations,” Phys. Rev. A 86, 042107 (2012).
- U. Shrikant, R. Srikanth, and S. Banerjee, “On the eternal non-Markovianity of non-unital quantum channels,” arXiv:2203.10625 (2022).
- B. Gulácsi and G. Burkard, “Signatures of non-Markovianity of a superconducting qubit,” Phys. Rev. B 107, 174511 (2023).
- S. Nakajima, “On Quantum Theory of Transport Phenomena: Steady Diffusion,” Prog. Theor. Phys. 20, 948–959 (1958).
- R. Zwanzig, “Ensemble Method in the Theory of Irreversibility,” J. Chem. Phys. 33, 1338–1341 (1960).
- H. Mori, “Transport, Collective Motion, and Brownian Motion,” Prog. Theor. Phys. 33, 423–455 (1965).
- H. T. Şenyaşa, Ş. Kesgin, G. Karpat, and B. Çakmak, “Entropy Production in Non-Markovian Collision Models: Information Backflow vs. System-Environment Correlations,” Entropy 24, 824 (2022).
- Á. Rivas, S. F. Huelga, and M. B. Plenio, “Entanglement and non-Markovianity of quantum evolutions,” Phys. Rev. Lett. 105, 050403 (2010).
- D. Chruściński, A. Kossakowski, and A. Rivas, “Measures of non-markovianity: Divisibility versus backflow of information,” Phys. Rev. A 83, 052128 (2011a).
- D. Chruściński, C. Macchiavello, and S. Maniscalco, “Detecting Non-Markovianity of Quantum Evolution via Spectra of Dynamical Maps,” Phys. Rev. Lett. 118, 080404 (2017).
- S. Bhattacharya, A. Misra, C. Mukhopadhyay, and A. K. Pati, “Exact master equation for a spin interacting with a spin bath: Non-Markovianity and negative entropy production rate,” Phys. Rev. A 95, 012122 (2017).
- T. Chanda and S. Bhattacharya, “Delineating incoherent non-Markovian dynamics using quantum coherence,” Ann. Phys. 366, 1–12 (2016).
- J. Hawkins, Ergodic Dynamics: From Basic Theory to Applications (Springer Nature Switzerland, Cham, 2021).
- J. M. Deutsch, “Eigenstate thermalization hypothesis,” Rep. Prog. Phys. 81, 082001 (2018).
- A. P. Luca D’Alessio, Yariv Kafri and M. Rigol, “From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics,” Adv. Phys. 65, 239–362 (2016).
- T. Mori, “Floquet States in Open Quantum Systems,” Annu. Rev. Condens. Matter Phys. 14, 35–56 (2023).
- E. Mangaud, R. Puthumpally-Joseph, D. Sugny, C. Meier, O. Atabek, and M. Desouter-Lecomte, “Non-Markovianity in the optimal control of an open quantum system described by hierarchical equations of motion,” New J. Phys. 20, 043050 (2018).
- D. A. Lidar and T. A. Brun, Quantum error correction (Cambridge University Press, Cambridge, 2013).
- V. A. Vozhakov, M. V. Bastrakova, N. V. Klenov, I. I. Soloviev, W. V. Pogosov, D. V. Babukhin, A. A. Zhukov, and A. M. Satanin, “State control in superconducting quantum processors,” Phys.-Uspekhi 65, 457–476 (2022).
- B. M. Terhal, “Quantum error correction for quantum memories,” Rev. Mod. Phys. 87, 307–346 (2015).
- M. V. Bastrakova, N. V. Klenov, and A. M. Satanin, “One- and Two-Qubit Gates: Rabi Technique and Single Unipolar Pulses,” Phys. Solid State 61, 1515–1522 (2019).
- H. Jirari and W. Pötz, “Quantum optimal control theory and dynamic coupling in the spin-boson model,” Phys. Rev. A 74, 022306 (2006).
- H. Jirari and W. Pötz, “Optimal control of dissipation for the example of the spin-boson model,” Europhys. Lett. 77, 50005 (2007).
- P. Rebentrost and F. K. Wilhelm, “Optimal control of a leaking qubit,” Phys. Rev. B 79, 060507 (2009).
- G. Engelhardt, G. Platero, and J. Cao, “Discontinuities in Driven Spin-Boson Systems due to Coherent Destruction of Tunneling: Breakdown of the Floquet-Gibbs Distribution,” Phys. Rev. Lett. 123, 120602 (2019).
- L. Magazzù, P. Forn-Díaz, R. Belyansky, J.-L. Orgiazzi, M. A. Yurtalan, M. R. Otto, A. Lupascu, C. M. Wilson, and M. Grifoni, “Probing the strongly driven spin-boson model in a superconducting quantum circuit,” Nature Commun. 9, 1403 (2018).
- Y. Tanimura, “Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities,” J. Chem. Phys. 141, 044114 (2014).
- Y. Tanimura, “Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM),” J. Chem. Phys. 153, 020901 (2020).
- F. Shuang, C. Yang, H. Zhang, and Y. Yan, “Cooperativity and resonances in periodically driven spin-boson systems,” Phys. Rev. E 61, 7192–7195 (2000).
- R. P. Feynman and F. L. Vernon Jr, “The theory of a general quantum system interacting with a linear dissipative system,” Ann. Phys. 24, 118–173 (1963).
- P. Hayden and J. Sorce, “A canonical Hamiltonian for open quantum systems,” J. Phys. A Math. Theor. 55, 225302 (2022).
- V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely positive dynamical semigroups of N‐level systems,” J. Math. Phys. 17, 821–825 (1976).
- J. E. Runeson and J. O. Richardson, “Generalized spin mapping for quantum-classical dynamics,” J. Chem. Phys. 152, 084110 (2020).
- S. Lorenzo, F. Plastina, and M. Paternostro, “Geometrical characterization of non-Markovianity,” Phys. Rev. A 88, 020102 (2013b).
- M. Grifoni, E. Paladino, and U. Weiss, “Dissipation, decoherence and preparation effects in the spin-boson system,” Eur. Phys. J. B 10, 719–729 (1999).
- L. Magazzù, S. Denisov, and P. Hänggi, “Asymptotic Floquet states of a periodically driven spin-boson system in the nonperturbative coupling regime,” Phys. Rev. E 98, 022111 (2018).
- U. Weiss, Quantum dissipative systems (World Scientific, Singapore, 2012).
- A. Ishizaki and Y. Tanimura, “Quantum Dynamics of System Strongly Coupled to Low-Temperature Colored Noise Bath: Reduced Hierarchy Equations Approach,” JPSJ 74, 3131–3134 (2005).
- G. Amati, J. R. Mannouch, and J. O. Richardson, “Detailed balance in mixed quantum–classical mapping approaches,” J. Chem. Phys. 159, 214114 (2023).
- J. Berkovitz, R. Frigg, and F. Kronz, “The ergodic hierarchy, randomness and Hamiltonian chaos,” Stud. Hist. Philos. Sci. B - Stud. Hist. Philos. Mod. Phys. 37, 661–691 (2006).
- S. A. Sato, U. D. Giovannini, S. Aeschlimann, I. Gierz, H. Hübener, and A. Rubio, “Floquet states in dissipative open quantum systems,” J. Phys. B 53, 225601 (2020).
- T. N. Ikeda and M. Sato, “General description for nonequilibrium steady states in periodically driven dissipative quantum systems,” Sci. Adv. 6, eabb4019 (2020).
- T. Shirai, J. Thingna, T. Mori, S. Denisov, P. Hänggi, and S. Miyashita, “Effective Floquet–Gibbs states for dissipative quantum systems,” New J. Phys. 18, 053008 (2016).
- D. J. Evans, D. J. Searles, and S. R. Williams, “Dissipation and the relaxation to equilibrium,” J. Stat. Mech. Theory Exp. 2009, P07029 (2009).
- M. Thoss, H. Wang, and W. H. Miller, “Self-consistent hybrid approach for complex systems: Application to the spin-boson model with Debye spectral density,” J. Chem. Phys. 115, 2991–3005 (2001).
- J. E. Runeson, J. R. Mannouch, G. Amati, M. R. Fiechter, and J. Richardson, “Spin-mapping methods for simulating ultrafast nonadiabatic dynamics,” Chimia 76, 582–588 (2022).
- Q. Shi, L. Chen, G. Nan, R. Xu, and Y. Yan, “Electron transfer dynamics: Zusman equation versus exact theory,” J. Chem. Phys. 130 (2009), 10.1063/1.3125003.
- L. Zhu, H. Liu, and Q. Shi, “A new method to account for the difference between classical and quantum baths in quantum dissipative dynamics,” New J. Phys. 15, 095020 (2013).
- B. Vacchini, “A classical appraisal of quantum definitions of non-Markovian dynamics,” J. Phys. B At. Mol. Opt. Phys. 45, 154007 (2012).
- E.-M. Laine, J. Piilo, and H.-P. Breuer, “Measure for the non-Markovianity of quantum processes,” Phys. Rev. A 81, 062115 (2010).
- J. Watrous, The Theory of Quantum Information (Cambridge University Press, New York, 2018).
- S. Utagi, S. Banerjee, and R. Srikanth, “On the eternal non-Markovianity of non-unital quantum channels,” arXiv:2203.10625 (2023).
- M. B. Ruskai, “Beyond strong subadditivity? Improved bounds on the contraction of generalized relative entropy,” Rev. Math. Phys. 6, 1147–1161 (1994).
- S. Wißmann, A. Karlsson, E.-M. Laine, J. Piilo, and H.-P. Breuer, “Optimal state pairs for non-Markovian quantum dynamics,” Phys. Rev. A 86, 062108 (2012).
- G. Clos and H.-P. Breuer, “Quantification of memory effects in the spin-boson model,” Phys. Rev. A 86, 012115 (2012).
- P. Bordone, F. Buscemi, and C. Benedetti, “Effect of Markov and non-Markov classical noise on entanglement dynamics,” Fluct. Noise Lett. 11, 1242003 (2012).
- J.-S. Xu, K. Sun, C.-F. Li, X.-Y. Xu, G.-C. Guo, E. Andersson, R. Lo Franco, and G. Compagno, “Experimental recovery of quantum correlations in absence of system-environment back-action,” Nat. Commun. 4, 2851 (2013).
- B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer, and J. Piilo, “Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems,” Nat. Phys. 7, 931–934 (2011).
- R. Chen, Z. Song, X. Zhao, and X. Wang, “Variational quantum algorithms for trace distance and fidelity estimation,” QST 7, 015019 (2021).
- R. Puthumpally-Joseph, E. Mangaud, V. Chevet, M. Desouter-Lecomte, D. Sugny, and O. Atabek, “Basic mechanisms in the laser control of non-Markovian dynamics,” Phys. Rev. A 97, 033411 (2018).
- M. M. Wolf and J. I. Cirac, “Dividing Quantum Channels,” Commun. Math. Phys. 279, 147–168 (2008).
- S. H. Raja, M. Borrelli, R. Schmidt, J. P. Pekola, and S. Maniscalco, “Thermodynamic fingerprints of non-Markovianity in a system of coupled superconducting qubits,” Phys. Rev. A 97, 032133 (2018).
- E. Mangaud, C. Meier, and M. Desouter-Lecomte, “Analysis of the non-Markovianity for electron transfer reactions in an oligothiophene-fullerene heterojunction,” Chem. Phys. 494, 90–102 (2017).
- G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976).
- I. de Vega and D. Alonso, “Dynamics of non-Markovian open quantum systems,” Rev. Mod. Phys. 89, 015001 (2017).
- D. Chruściński and S. Maniscalco, “Degree of Non-Markovianity of Quantum Evolution,” Phys. Rev. Lett. 112, 120404 (2014).
- N. Megier, D. Chruściński, J. Piilo, and W. T. Strunz, “Eternal non-Markovianity: from random unitary to Markov chain realisations,” Scientific Reports 7, 6379 (2017).
- A. Vaishy, S. Mitra, and S. Bhattacharya, “Detecting genuine multipartite entanglement in three-qubit systems with eternal non-Markovianity,” J. Phys. A Math. Theor. 55, 225305 (2022).
- H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).
- D. J Evans and G. P Morriss, Statistical mechanics of nonequilbrium liquids (ANU Press, Canberra, 2007).
- D. Chruściński, A. Kossakowski, and A. Rivas, “Measures of non-markovianity: Divisibility versus backflow of information,” Phys. Rev. A 83, 052128 (2011b).
- G. Amati, M. A. C. Saller, A. Kelly, and J. O. Richardson, “Quasiclassical approaches to the generalized quantum master equation,” J. Chem. Phys. 157, 234103 (2022).
- N. A. da Costa Morazotti, A. H. da Silva, G. Audi, R. de Jesus Napolitano, and F. F. Fanchini, “Optimal Control for Continuous Dynamical Decoupling,” arXiv:2310.08417 (2023).
- N. C. Jones, T. D. Ladd, and B. H. Fong, “Dynamical decoupling of a qubit with always-on control fields,” New J. Phys. 14, 093045 (2012).
- E. Kapit, “The upside of noise: engineered dissipation as a resource in superconducting circuits,” Quantum Sci. Technol. 2, 033002 (2017).
- H. Jirari, “Time-optimal bang-bang control for the driven spin-boson system,” Phys. Rev. A 102, 012613 (2020).
- J. P. Palao, R. Kosloff, and C. P. Koch, “Protecting coherence in optimal control theory: State-dependent constraint approach,” Phys. Rev. A 77, 063412 (2008).
- E. M. Fortunato, L. Viola, J. Hodges, G. Teklemariam, and D. G. Cory, “Implementation of universal control on a decoherence-free qubit,” New J. Phys. 4, 5 (2002).
- T. Shirai, T. Mori, and S. Miyashita, “Floquet–Gibbs state in open quantum systems,” Eur. Phys. J.: Spec. Top. 227, 323–333 (2018).
- D. Brian and X. Sun, “Generalized quantum master equation: A tutorial review and recent advances,” Chinese Journal of Chemical Physics 34, 497–524 (2021).
- A. Montoya-Castillo and D. R. Reichman, “Approximate but accurate quantum dynamics from the Mori formalism: I. Nonequilibrium dynamics,” J. Chem. Phys. 144, 184104 (2016).
- A. Kelly, N. Brackbill, and T. E. Markland, “Accurate nonadiabatic quantum dynamics on the cheap: Making the most of mean field theory with master equations,” J. Chem. Phys. 142, 094110 (2015).
- F. Haake, “Statistical Treatment of Open Systems by Generalized Master Equations,” in Springer Tracts in Modern Physics: Ergebnisse der exakten Naturwissenschaftenc; Volume 66, edited by G. Höhler (Springer Berlin Heidelberg, Berlin, Heidelberg, 1973) pp. 98–168.
- A. Kelly, A. Montoya-Castillo, L. Wang, and T. E. Markland, “Generalized quantum master equations in and out of equilibrium: When can one win?” J. Chem. Phys. 144, 184105 (2016).
- S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1999).
- Q. Shi and E. Geva, “A new approach to calculating the memory kernel of the generalized quantum master equation for an arbitrary system–bath coupling,” J. Chem. Phys. 119, 12063–12076 (2003).