Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The index with respect to a contravariantly finite subcategory (2401.09291v3)

Published 17 Jan 2024 in math.RT and math.CT

Abstract: Cluster algebras are categorified by cluster categories, and $g$-vectors are categorified by the classic index with respect to cluster tilting subcategories. However, the recently introduced completed discrete cluster categories of Dynkin type $\mathbb{A}$ have a very limited supply of cluster tilting subcategories, so we define the index with respect to additive, contravariantly finite subcategories of which there are many more. This permits us to extend several strong results from the classic theory to completed discrete cluster categories of Dynkin type $\mathbb{A}$. Notably, the index with respect to the subcategory generated by a fan triangulation distinguishes between rigid objects. We also prove that our index is additive on triangles up to an error term. This extends the key property which permits the classic index to be used in the categorification of cluster algebras.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. P. Aluffi. Algebra: chapter 0, volume 104 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2009. Second printing.
  2. Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory, volume 65 of London Mathematical Society Student Texts. Cambridge Univ. Press, Cambridge, 2006.
  3. M. Auslander. Representation dimension of artin algebras. Queen Mary College mathematics notes (republished in [5]), 1971.
  4. M. Auslander. Representation theory of Artin algebras. I. Comm. Algebra, 1:177–268, 1974.
  5. M. Auslander. Selected works of Maurice Auslander. Part 1. American Mathematical Society, Providence, RI, 1999. Edited and with a foreword by Idun Reiten, Sverre O. Smalø, and Øyvind Solberg.
  6. M. Auslander and I. Reiten. Modules determined by their composition factors. Illinois J. Math., 29:280–301, 1985.
  7. M. Auslander and I. Reiten. Applications of contravariantly finite subcategories. Adv. Math., 86(1):111–152, 1991.
  8. H. Bass. Algebraic K𝐾Kitalic_K-theory. W. A. Benjamin, Inc., New York-Amsterdam, 1968.
  9. A. Beligiannis. On the Freyd categories of an additive category. Homology Homotopy Appl., 2:147–185, 2000.
  10. J. Chuang and A. Lazarev. Rank functions on triangulated categories. J. Reine Angew. Math., 781:127–164, 2021.
  11. A functorial approach to rank functions on triangulated categories. Preprint, 2022. https://arxiv.org/abs/2209.00898v2.
  12. R. Dehy and B. Keller. On the combinatorics of rigid objects in 2-Calabi–Yau categories. Int. Math. Res. Not. IMRN, 2008:Art. ID rnn029, 2008.
  13. S. Fomin and A. Zelevinsky. Cluster algebras IV: Coefficients. Compos. Math., 143:112–164, 2007.
  14. L. Guo. On tropical friezes associated with Dynkin diagrams. Int. Math. Res. Not. IMRN, 2013:4243–4284, 2013.
  15. N. Hanihara. Yoneda algebras and their singularity categories. Proc. Lond. Math. Soc. (3), 124:854–898, 2022.
  16. n-exangulated categories (I): Definitions and fundamental properties. J. Algebra, 570:531–586, 2021.
  17. T. Holm and P. Jørgensen. Generalised friezes and a modified Caldero–Chapoton map depending on a rigid object, II. Bull. Sci. Math., 140:112–131, 2016.
  18. P. Jørgensen. Tropical friezes and the index in higher homological algebra. Math. Proc. Cambridge Philos. Soc., 171:23–49, 2021.
  19. P. Jørgensen and A. Shah. The index with respect to a rigid subcategory of a triangulated category. Int. Math. Res. Not. IMRN, 2023. To appear. https://doi.org/10.1093/imrn/rnad130.
  20. H. Krause. Cohomological length functions. Nagoya Math. J., 223(1):136–161, 2016.
  21. H. Krause. Homological theory of representations, volume 195 of Cambridge Stud. Adv. Math. Cambridge University Press, 2021.
  22. J. P. May. The additivity of traces in triangulated categories. Adv. Math., 163(1):34–73, 2001.
  23. H. Nakaoka and Y. Palu. Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Géom. Différ. Catég., 60(2):117–193, 2019.
  24. A. Neeman. Triangulated categories, volume 148 of Ann. of Math. (2) Studies. Princeton University Press, Princeton, NJ, 2001.
  25. Y. Ogawa and A. Shah. A resolution theorem for extriangulated categories with applications to the index. Preprint, 2023. https://arxiv.org/abs/2311.10576v2.
  26. Associahedra for finite-type cluster algebras and minimal relations between g𝑔gitalic_g-vectors. Proc. London Math. Soc. (3), 127:513–588, 2023.
  27. Y. Palu. Cluster characters for 2-Calabi–Yau triangulated categories. Ann. Inst. Fourier (Grenoble), 58:2221–2248, 2008.
Citations (3)

Summary

We haven't generated a summary for this paper yet.