Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Offloading platooning applications from 5.9 GHz V2X to Radar Communications: effects on safety and efficiency (2401.09242v2)

Published 17 Jan 2024 in cs.NI

Abstract: V2X communications are nowadays performed at 5.9\,GHz spectrum, either using WiFi-based or Cellular technology. The channel capacity is limited, and congestion control regulates the number of messages that can enter the medium. With user rate growing, overloading becomes a factor that might affect road safety and traffic efficiency. The present paper evaluates the potential of using Radar-Based Communication (RadCom) for offloading the V2X spectrum. We consider a heavy-duty vehicle (HDV) platooning scenario as a case of maneuver coordination where local messages are transmitted by means of RadCom at different penetration rates. Simulations show significant improvements in channel occupation and network reliability. As a result, RadCom allows for shorter safe and energy efficient inter-vehicle distances.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. United Nations, Department of Economic and Social Affairs - Sustainable Development, “Transforming our world: the 2030 agenda for sustainable development,” p. 16301, 2015. [Online]. Available: https://sdgs.un.org/2030agenda
  2. European Commission (EC), “Towards a European road safety area: policy orientations on road safety 2011-2020,” July 2010.
  3. European Telecommunications Standards Institute (ETSI), “Intelligent Transport Systems (ITS); Vehicular communications; Basic set of applications; Part 2: Specification of Cooperative Awareness basic service,” ETSI, Standard EN 302 637-2 - V1.4.1, April 2019.
  4. ——, “Intelligent Transport Systems (ITS); Vehicular communications; Basic set of applications; Part 3: Specification of Decentralized Environmental Notification Basic Service,” Standard EN 302 637-3 - V1.3.1, April 2019.
  5. Q. Delooz, R. Riebl, A. Festag, and A. Vinel, “Design and performance of congestion-aware collective perception,” in 2020 IEEE Vehicular Networking Conference (VNC), 2020, pp. 1–8.
  6. European Telecommunications Standards Institute (ETSI), “Intelligent Transport Systems (ITS); Multi-Channel Operation study; Release 2,” ETSI TR 103 439 - V2.1.1, October 2021.
  7. O. Amador, I. Soto, M. Urueña, and M. Calderon, “GoT: Decreasing DCC Queuing for CAM Messages,” IEEE Communications Letters, vol. 24, no. 12, pp. 2974–2978, 2020.
  8. A. Baiocchi, I. Turcanu, N. Lyamin, K. Sjöberg, and A. Vinel, “Age of Information in IEEE 802.11p,” in 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), 2021, pp. 1024–1031.
  9. O. Amador, I. Soto, M. Calderón, and M. Urueña, “Experimental Evaluation of the ETSI DCC Adaptive Approach and Related Algorithms,” IEEE Access, vol. 8, pp. 49 798–49 811, 2020.
  10. C. Bonnet and H. Fritz, “Fuel consumption reduction in a platoon: Experimental results with two electronically coupled trucks at close spacing,” SAE technical paper, Tech. Rep., 2000.
  11. T. Robinson, E. Chan, and E. Coelingh, “Operating platoons on public motorways: An introduction to the sartre platooning programme,” in 17th world congress on intelligent transport systems, vol. 1, 2010, p. 12.
  12. M. Adolfson, “Cooperative dynamic formation of platoons for safe and energy-optimized goods transportation,” in 93rd annual meeting of the transportation research board, Washington, DC, USA (Oral presentation), p. 42.
  13. A. Pezzano and P. D. IDIADA, “Enabling safe multi-brand platooning for europe,” 2020.
  14. G. Sidorenko, J. Thunberg, K. Sjöberg, and A. Vinel, “Vehicle-to-vehicle communication for safe and fuel-efficient platooning,” in 2020 IEEE Intelligent Vehicles Symposium (IV), 2020, pp. 795–802.
  15. European Telecommunications Standards Institute (ETSI), “Intelligent Transport Systems (ITS); Pre-standardization study on co-channel co-existence between IEEE- and 3GPP- based ITS technologies in the 5 855 MHz - 5 925 MHz frequency band ,” ETSI TR 103 766, September 2021.
  16. N. Lyamin, A. Vinel, M. Jonsson, and B. Bellalta, “Cooperative awareness in vanets: On etsi en 302 637-2 performance,” IEEE Transactions on Vehicular Technology, vol. 67, no. 1, pp. 17–28, 2018.
  17. D. H. Nguyen, “Adaptation of etsi dcc for multi-lane platoon scenario,” Delft, NL, August 2023, available at http://resolver.tudelft.nl/uuid:9fac47f4-c240-44a1-89c9-f783b331a29a.
  18. F. Zhang, M. M. Wang, R. Deng, and X. Zhao, “High-reliability and low-energy sensor sharing in vehicle platoon based on multihop millimeter-wave communication,” IEEE Internet of Things Journal, vol. 9, no. 19, pp. 18 514–18 526, 2022.
  19. T. Paulin and S. Ruehrup, “On the Impact of Fading and Interference on Contention-Based Geographic Routing in VANETs,” in 2015 IEEE 82nd Vehicular Technology Conference (VTC Fall), 2015, pp. 1–5.
  20. European Telecommunications Standards Institute (ETSI), “Intelligent Transport Systems (ITS); ITS-G5 Access layer specification for Intelligent Transport Systems operating in the 5 GHz frequency band ,” ETSI EN 302 663 V1.3.1, January 2020.
  21. S. Huang, M. Xiao, and H. V. Poor, “Achievable rate analysis of millimeter wave channels using random coding error exponents,” IEEE Transactions on Wireless Communications, vol. 21, no. 1, pp. 250–263, 2022.
  22. G. K. Carvajal, M. F. Keskin, C. Aydogdu, O. Eriksson, H. Herbertsson, H. Hellsten, E. Nilsson, M. Rydström, K. Vänas, and H. Wymeersch, “Comparison of automotive fmcw and ofdm radar under interference,” in 2020 IEEE Radar Conference (RadarConf20), 2020, pp. 1–6.
  23. H. Hellsten and E. Nilsson, “Multiple access radar using slow chirp modulation,” in 2020 IEEE Radar Conference (RadarConf20), 2020, pp. 1–6.
  24. C. Aydogdu, M. F. Keskin, G. K. Carvajal, O. Eriksson, H. Hellsten, H. Herbertsson, E. Nilsson, M. Rydström, K. Vanäs, M. Mete, P. Sandrup, and H. Wymeersch, “Radar interference mitigation through active coordination,” in 2021 IEEE Radar Conference (RadarConf21), 2021, pp. 1–6.
  25. C. Aydogdu, M. F. Keskin, G. K. Carvajal, O. Eriksson, H. Hellsten, H. Herbertsson, E. Nilsson, M. Rydstrom, K. Vanas, and H. Wymeersch, “Radar interference mitigation for automated driving: Exploring proactive strategies,” IEEE Signal Processing Magazine, vol. 37, no. 4, pp. 72–84, 2020.
  26. R. Riebl, H. Günther, C. Facchi, and L. Wolf, “Artery: Extending Veins for VANET applications,” in 2015 International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), 2015, pp. 450–456.
  27. C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis,” IEEE Transactions on Mobile Computing, vol. 10, no. 1, pp. 3–15, 2011.
  28. D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent Development and Applications of SUMO - Simulation of Urban MObility,” International Journal On Advances in Systems and Measurements, vol. 5, no. 3&4, pp. 128–138, December 2012.
  29. European Telecommunications Standards Institute (ETSI), “Intelligent Transport Systems (ITS); Decentralized congestion control mechanisms for Intelligent Transport Systems operating in the 5 GHz range; Access layer part,” ETSI EN 102 687 - V1.2.1, April 2018.
  30. K.-Y. Liang, J. Mårtensson, and K. H. Johansson, “Heavy-duty vehicle platoon formation for fuel efficiency,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1051–1061, 2016.
  31. C. Zhang and M. P. Lammert, “Impact to cooling airflow from truck platooning,” National Renewable Energy Lab.(NREL), Golden, CO (United States), Tech. Rep., 2020.
  32. V. Sharma and S. Sergeyev, “Range detection assessment of photonic radar under adverse weather perceptions,” Optics Communications, vol. 472, p. 125891, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0030401820303631
  33. S. Walz, M. Bijelic, F. Kraus, W. Ritter, M. Simon, and I. Doric, “A benchmark for spray from nearby cutting vehicles,” in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), 2021, pp. 188–195.
  34. S. Dimce, M. S. Amjad, and F. Dressler, “mmwave on the road: Investigating the weather impact on 60 ghz v2x communication channels,” in 2021 16th Annual Conference on Wireless On-demand Network Systems and Services Conference (WONS), 2021, pp. 1–8.
  35. European Telecommunications Standards Institute (ETSI), “Intelligent Transport Systems (ITS); Security; ITS communications security architecture and security management ,” ETSI TS 102 940 V1.2.1, November 2016.
  36. European Automobile Manufacturers’ Association, “Average age of the EU vehicle fleet, by country.” [Online]. Available: https://www.acea.auto/figure/average-age-of-eu-vehicle-fleet-by-country/
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com