Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A five field formulation for flow simulations in porous media with fractures and barriers via an optimization based domain decomposition method (2401.09072v1)

Published 17 Jan 2024 in math.NA and cs.NA

Abstract: The present work deals with the numerical resolution of coupled 3D-2D problems arising from the simulation of fluid flow in fractured porous media modeled via the Discrete Fracture and Matrix (DFM) model. According to the DFM model, fractures are represented as planar interfaces immersed in a 3D porous matrix and can behave as preferential flow paths, in the case of conductive fractures, or can actually be a barrier for the flow, when, instead, the permeability in the normal-to-fracture direction is small compared to the permeability of the matrix. Consequently, the pressure solution in a DFM can be discontinuous across a barrier, as a result of the geometrical dimensional reduction operated on the fracture. The present work is aimed at developing a numerical scheme suitable for the simulation of the flow in a DFM with fractures and barriers, using a mesh for the 3D matrix non conforming to the fractures and that is ready for domain decomposition. This is achieved starting from a PDE-constrained optimization method, currently available in literature only for conductive fractures in a DFM. First, a novel formulation of the optimization problem is defined to account for non permeable fractures. These are described by a filtration-like coupling at the interface with the surrounding porous matrix. Also the extended finite element method with discontinuous enrichment functions is used to reproduce the pressure solution in the matrix around a barrier. The method is presented here in its simplest form, for clarity of exposition, i.e. considering the case of a single fracture in a 3D domain, also providing a proof of the well posedness of the resulting discrete problem. Four validation examples are proposed to show the viability and the effectiveness of the method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. doi:10.1137/S1064827503429363.
  2. doi:10.1081/LFT-200033132.
  3. doi:10.2118/154246-PA.
  4. doi:10.1016/j.advwatres.2017.05.009.
  5. doi:10.1016/j.cma.2018.09.003.
  6. doi:10.1016/j.cma.2021.114112.
  7. doi:10.1016/j.advwatres.2022.104361.
  8. doi:10.1016/j.jcp.2017.05.049.
  9. doi:10.1137/17M1138194.
  10. doi:https://doi.org/10.1016/j.cam.2019.112424.
  11. doi:10.1016/j.advwatres.2013.04.001.
  12. doi:10.1051/m2an/2013132.
  13. doi:10.1016/j.jcp.2018.09.048.
  14. doi:10.1007/s10596-020-10029-8.
  15. doi:10.1016/j.jcp.2023.112244.
  16. doi:10.1016/j.jcp.2022.111396.
  17. doi:10.1137/17M1119500.
  18. doi:10.1051/m2an/2015087.
  19. doi:10.1007/s13137-018-0105-3.
  20. doi:10.2516/ogst/2019008.
  21. doi:10.1007/s10596-019-09831-w.
  22. doi:10.1016/j.jcp.2012.01.023.
  23. doi:10.1007/s10596-016-9558-3.
  24. doi:10.1007/s00211-015-0782-x.
  25. doi:10.1007/s10596-018-9779-8.
  26. doi:10.1002/nme.2914.
  27. doi:10.1002/1097-0207(20000820)48:11¡1549::AID-NME955¿3.0.CO;2-A.
  28. doi:10.1137/120865884.
  29. doi:10.1007/s10596-015-9536-1.
  30. doi:10.1007/978-3-319-41246-7_3.
  31. doi:10.1137/15M1022574.
  32. doi:10.1007/s10596-018-9778-9.
  33. doi:10.1007/s10231-020-01013-1.
  34. doi:10.1051/m2an/2008052.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com