Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Lidar-based Object Detection in Adverse Weather using Offset Sequences in Time (2401.09049v1)

Published 17 Jan 2024 in cs.CV and cs.RO

Abstract: Automated vehicles require an accurate perception of their surroundings for safe and efficient driving. Lidar-based object detection is a widely used method for environment perception, but its performance is significantly affected by adverse weather conditions such as rain and fog. In this work, we investigate various strategies for enhancing the robustness of lidar-based object detection by processing sequential data samples generated by lidar sensors. Our approaches leverage temporal information to improve a lidar object detection model, without the need for additional filtering or pre-processing steps. We compare $10$ different neural network architectures that process point cloud sequences including a novel augmentation strategy introducing a temporal offset between frames of a sequence during training and evaluate the effectiveness of all strategies on lidar point clouds under adverse weather conditions through experiments. Our research provides a comprehensive study of effective methods for mitigating the effects of adverse weather on the reliability of lidar-based object detection using sequential data that are evaluated using public datasets such as nuScenes, Dense, and the Canadian Adverse Driving Conditions Dataset. Our findings demonstrate that our novel method, involving temporal offset augmentation through randomized frame skipping in sequences, enhances object detection accuracy compared to both the baseline model (Pillar-based Object Detection) and no augmentation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. G. Csurka, “Domain adaptation for visual applications: A comprehensive survey,” CoRR, vol. abs/1702.05374, 2017. [Online]. Available: http://arxiv.org/abs/1702.05374
  2. Y. Wang, A. Fathi, A. Kundu, D. A. Ross, C. Pantofaru, T. A. Funkhouser, and J. Solomon, “Pillar-based object detection for autonomous driving,” CoRR, vol. abs/2007.10323, 2020. [Online]. Available: https://arxiv.org/abs/2007.10323
  3. Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou, and X. Bai, “Tanet: Robust 3d object detection from point clouds with triple attention,” AAAI, 2020. [Online]. Available: https://arxiv.org/pdf/1912.05163.pdf
  4. T. Gruber, F. Julca-Aguilar, M. Bijelic, and F. Heide, “Gated2depth: Real-time dense lidar from gated images,” in The IEEE International Conference on Computer Vision (ICCV), 2019.
  5. M. Pitropov, D. E. Garcia, J. Rebello, M. Smart, C. Wang, K. Czarnecki, and S. Waslander, “Canadian adverse driving conditions dataset,” The International Journal of Robotics Research, vol. 40, no. 4-5, pp. 681–690, 2021. [Online]. Available: https://doi.org/10.1177/0278364920979368
  6. A. Kurup and J. Bos, “DSOR: A scalable statistical filter for removing falling snow from lidar point clouds in severe winter weather,” CoRR, vol. abs/2109.07078, 2021. [Online]. Available: https://arxiv.org/abs/2109.07078
  7. S. Campbell, N. O’Mahony, L. Krpalcova, D. Riordan, J. Walsh, A. Murphy, and C. Ryan, “Sensor technology in autonomous vehicles : A review,” in 2018 29th Irish Signals and Systems Conference (ISSC), 2018, pp. 1–4.
  8. V. Kilic, D. Hegde, V. Sindagi, A. B. Cooper, M. A. Foster, and V. M. Patel, “Lidar light scattering augmentation (LISA): physics-based simulation of adverse weather conditions for 3d object detection,” CoRR, vol. abs/2107.07004, 2021. [Online]. Available: https://arxiv.org/abs/2107.07004
  9. S. Hasirlioglu, “A novel method for simulation-based testing and validation of automotive surround sensors under adverse weather conditions,” dissertation, Johannes Kepler University Linz, 2020. [Online]. Available: https://epub.jku.at/download/pdf/4837383
  10. R. Rasshofer, M. Spies, and H. Spies, “Influences of weather phenomena on automotive laser radar systems,” Advances in Radio Science, vol. 9, pp. 49–60, 07 2011.
  11. K. Yoneda, N. Suganuma, R. Yanase, and M. Aldibaja, “Automated driving recognition technologies for adverse weather conditions,” IATSS Research, vol. 43, no. 4, pp. 253–262, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0386111219301463
  12. H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for autonomous driving,” arXiv preprint arXiv:1903.11027, 2019.
  13. R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015. [Online]. Available: http://arxiv.org/abs/1504.08083
  14. S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time object detection with region proposal networks,” CoRR, vol. abs/1506.01497, 2015. [Online]. Available: http://arxiv.org/abs/1506.01497
  15. P. Li, X. Chen, and S. Shen, “Stereo R-CNN based 3d object detection for autonomous driving,” CoRR, vol. abs/1902.09738, 2019. [Online]. Available: http://arxiv.org/abs/1902.09738
  16. Z. Liu, Z. Wu, and R. Tóth, “SMOKE: single-stage monocular 3d object detection via keypoint estimation,” CoRR, vol. abs/2002.10111, 2020. [Online]. Available: https://arxiv.org/abs/2002.10111
  17. Y. Wang, W. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q. Weinberger, “Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving,” CoRR, vol. abs/1812.07179, 2018. [Online]. Available: http://arxiv.org/abs/1812.07179
  18. C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” CoRR, vol. abs/1612.00593, 2016. [Online]. Available: http://arxiv.org/abs/1612.00593
  19. C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on point sets in a metric space,” 2017. [Online]. Available: https://arxiv.org/abs/1706.02413
  20. Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3d object detection,” CoRR, vol. abs/1711.06396, 2017. [Online]. Available: http://arxiv.org/abs/1711.06396
  21. A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpillars: Fast encoders for object detection from point clouds,” CoRR, vol. abs/1812.05784, 2018. [Online]. Available: http://arxiv.org/abs/1812.05784
  22. E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby, and A. Mouzakitis, “A survey on 3d object detection methods for autonomous driving applications,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 10, pp. 3782–3795, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8621614
  23. Y. Zhou, P. Sun, Y. Zhang, D. Anguelov, J. Gao, T. Ouyang, J. Guo, J. Ngiam, and V. Vasudevan, “End-to-end multi-view fusion for 3d object detection in lidar point clouds,” CoRR, vol. abs/1910.06528, 2019. [Online]. Available: http://arxiv.org/abs/1910.06528
  24. R. Huang, W. Zhang, A. Kundu, C. Pantofaru, D. A. Ross, T. A. Funkhouser, and A. Fathi, “An LSTM approach to temporal 3d object detection in lidar point clouds,” CoRR, vol. abs/2007.12392, 2020. [Online]. Available: https://arxiv.org/abs/2007.12392
  25. J. Yin, J. Shen, C. Guan, D. Zhou, and R. Yang, “Lidar-based online 3d video object detection with graph-based message passing and spatiotemporal transformer attention,” 2020. [Online]. Available: https://arxiv.org/abs/2004.01389
  26. X. Chen, S. Shi, B. Zhu, K. C. Cheung, H. Xu, and H. Li, “Mppnet: Multi-frame feature intertwining with proxy points for 3d temporal object detection,” in Computer Vision – ECCV 2022, S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner, Eds.   Cham: Springer Nature Switzerland, 2022, pp. 680–697.
  27. S. McCrae and A. Zakhor, “3d object detection for autonomous driving using temporal lidar data,” in 2020 IEEE International Conference on Image Processing (ICIP), 2020, pp. 2661–2665.
  28. A. Sallab and S. Abdelkarim, “Yolo4d: A spatio-temporal approach for real-time multi-object detection and classification from lidar point clouds,” in Neural Information Processing Systems (NIPS), Machine Learning in Inetelligent Transportation MLITS workshop, 11 2018.
  29. W. Ali, S. Abdelkarim, M. Zidan, M. Zahran, and A. E. Sallab, “Yolo3d: End-to-end real-time 3d oriented object bounding box detection from lidar point cloud,” in Computer Vision – ECCV 2018 Workshops, L. Leal-Taixé and S. Roth, Eds.   Cham: Springer International Publishing, 2019, pp. 716–728.
  30. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017. [Online]. Available: https://arxiv.org/abs/1706.03762
  31. Y. Zeng, D. Zhang, C. Wang, Z. Miao, T. Liu, X. Zhan, D. Hao, and C. Ma, “Lift: Learning 4d lidar image fusion transformer for 3d object detection,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 17 151–17 160.
  32. N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection with transformers,” CoRR, vol. abs/2005.12872, 2020. [Online]. Available: https://arxiv.org/abs/2005.12872
  33. F. Ruppel, F. Faion, C. Gläser, and K. Dietmayer, “Transformers for object detection in large point clouds,” 2022. [Online]. Available: https://arxiv.org/abs/2209.15258
  34. G. K. Erabati and H. Araujo, “Li3detr: A lidar based 3d detection transformer,” 2022. [Online]. Available: https://arxiv.org/abs/2210.15365
Citations (1)

Summary

We haven't generated a summary for this paper yet.