Enhancing Lidar-based Object Detection in Adverse Weather using Offset Sequences in Time (2401.09049v1)
Abstract: Automated vehicles require an accurate perception of their surroundings for safe and efficient driving. Lidar-based object detection is a widely used method for environment perception, but its performance is significantly affected by adverse weather conditions such as rain and fog. In this work, we investigate various strategies for enhancing the robustness of lidar-based object detection by processing sequential data samples generated by lidar sensors. Our approaches leverage temporal information to improve a lidar object detection model, without the need for additional filtering or pre-processing steps. We compare $10$ different neural network architectures that process point cloud sequences including a novel augmentation strategy introducing a temporal offset between frames of a sequence during training and evaluate the effectiveness of all strategies on lidar point clouds under adverse weather conditions through experiments. Our research provides a comprehensive study of effective methods for mitigating the effects of adverse weather on the reliability of lidar-based object detection using sequential data that are evaluated using public datasets such as nuScenes, Dense, and the Canadian Adverse Driving Conditions Dataset. Our findings demonstrate that our novel method, involving temporal offset augmentation through randomized frame skipping in sequences, enhances object detection accuracy compared to both the baseline model (Pillar-based Object Detection) and no augmentation.
- G. Csurka, “Domain adaptation for visual applications: A comprehensive survey,” CoRR, vol. abs/1702.05374, 2017. [Online]. Available: http://arxiv.org/abs/1702.05374
- Y. Wang, A. Fathi, A. Kundu, D. A. Ross, C. Pantofaru, T. A. Funkhouser, and J. Solomon, “Pillar-based object detection for autonomous driving,” CoRR, vol. abs/2007.10323, 2020. [Online]. Available: https://arxiv.org/abs/2007.10323
- Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou, and X. Bai, “Tanet: Robust 3d object detection from point clouds with triple attention,” AAAI, 2020. [Online]. Available: https://arxiv.org/pdf/1912.05163.pdf
- T. Gruber, F. Julca-Aguilar, M. Bijelic, and F. Heide, “Gated2depth: Real-time dense lidar from gated images,” in The IEEE International Conference on Computer Vision (ICCV), 2019.
- M. Pitropov, D. E. Garcia, J. Rebello, M. Smart, C. Wang, K. Czarnecki, and S. Waslander, “Canadian adverse driving conditions dataset,” The International Journal of Robotics Research, vol. 40, no. 4-5, pp. 681–690, 2021. [Online]. Available: https://doi.org/10.1177/0278364920979368
- A. Kurup and J. Bos, “DSOR: A scalable statistical filter for removing falling snow from lidar point clouds in severe winter weather,” CoRR, vol. abs/2109.07078, 2021. [Online]. Available: https://arxiv.org/abs/2109.07078
- S. Campbell, N. O’Mahony, L. Krpalcova, D. Riordan, J. Walsh, A. Murphy, and C. Ryan, “Sensor technology in autonomous vehicles : A review,” in 2018 29th Irish Signals and Systems Conference (ISSC), 2018, pp. 1–4.
- V. Kilic, D. Hegde, V. Sindagi, A. B. Cooper, M. A. Foster, and V. M. Patel, “Lidar light scattering augmentation (LISA): physics-based simulation of adverse weather conditions for 3d object detection,” CoRR, vol. abs/2107.07004, 2021. [Online]. Available: https://arxiv.org/abs/2107.07004
- S. Hasirlioglu, “A novel method for simulation-based testing and validation of automotive surround sensors under adverse weather conditions,” dissertation, Johannes Kepler University Linz, 2020. [Online]. Available: https://epub.jku.at/download/pdf/4837383
- R. Rasshofer, M. Spies, and H. Spies, “Influences of weather phenomena on automotive laser radar systems,” Advances in Radio Science, vol. 9, pp. 49–60, 07 2011.
- K. Yoneda, N. Suganuma, R. Yanase, and M. Aldibaja, “Automated driving recognition technologies for adverse weather conditions,” IATSS Research, vol. 43, no. 4, pp. 253–262, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0386111219301463
- H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for autonomous driving,” arXiv preprint arXiv:1903.11027, 2019.
- R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015. [Online]. Available: http://arxiv.org/abs/1504.08083
- S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time object detection with region proposal networks,” CoRR, vol. abs/1506.01497, 2015. [Online]. Available: http://arxiv.org/abs/1506.01497
- P. Li, X. Chen, and S. Shen, “Stereo R-CNN based 3d object detection for autonomous driving,” CoRR, vol. abs/1902.09738, 2019. [Online]. Available: http://arxiv.org/abs/1902.09738
- Z. Liu, Z. Wu, and R. Tóth, “SMOKE: single-stage monocular 3d object detection via keypoint estimation,” CoRR, vol. abs/2002.10111, 2020. [Online]. Available: https://arxiv.org/abs/2002.10111
- Y. Wang, W. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q. Weinberger, “Pseudo-lidar from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving,” CoRR, vol. abs/1812.07179, 2018. [Online]. Available: http://arxiv.org/abs/1812.07179
- C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” CoRR, vol. abs/1612.00593, 2016. [Online]. Available: http://arxiv.org/abs/1612.00593
- C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on point sets in a metric space,” 2017. [Online]. Available: https://arxiv.org/abs/1706.02413
- Y. Zhou and O. Tuzel, “Voxelnet: End-to-end learning for point cloud based 3d object detection,” CoRR, vol. abs/1711.06396, 2017. [Online]. Available: http://arxiv.org/abs/1711.06396
- A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom, “Pointpillars: Fast encoders for object detection from point clouds,” CoRR, vol. abs/1812.05784, 2018. [Online]. Available: http://arxiv.org/abs/1812.05784
- E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby, and A. Mouzakitis, “A survey on 3d object detection methods for autonomous driving applications,” IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 10, pp. 3782–3795, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8621614
- Y. Zhou, P. Sun, Y. Zhang, D. Anguelov, J. Gao, T. Ouyang, J. Guo, J. Ngiam, and V. Vasudevan, “End-to-end multi-view fusion for 3d object detection in lidar point clouds,” CoRR, vol. abs/1910.06528, 2019. [Online]. Available: http://arxiv.org/abs/1910.06528
- R. Huang, W. Zhang, A. Kundu, C. Pantofaru, D. A. Ross, T. A. Funkhouser, and A. Fathi, “An LSTM approach to temporal 3d object detection in lidar point clouds,” CoRR, vol. abs/2007.12392, 2020. [Online]. Available: https://arxiv.org/abs/2007.12392
- J. Yin, J. Shen, C. Guan, D. Zhou, and R. Yang, “Lidar-based online 3d video object detection with graph-based message passing and spatiotemporal transformer attention,” 2020. [Online]. Available: https://arxiv.org/abs/2004.01389
- X. Chen, S. Shi, B. Zhu, K. C. Cheung, H. Xu, and H. Li, “Mppnet: Multi-frame feature intertwining with proxy points for 3d temporal object detection,” in Computer Vision – ECCV 2022, S. Avidan, G. Brostow, M. Cissé, G. M. Farinella, and T. Hassner, Eds. Cham: Springer Nature Switzerland, 2022, pp. 680–697.
- S. McCrae and A. Zakhor, “3d object detection for autonomous driving using temporal lidar data,” in 2020 IEEE International Conference on Image Processing (ICIP), 2020, pp. 2661–2665.
- A. Sallab and S. Abdelkarim, “Yolo4d: A spatio-temporal approach for real-time multi-object detection and classification from lidar point clouds,” in Neural Information Processing Systems (NIPS), Machine Learning in Inetelligent Transportation MLITS workshop, 11 2018.
- W. Ali, S. Abdelkarim, M. Zidan, M. Zahran, and A. E. Sallab, “Yolo3d: End-to-end real-time 3d oriented object bounding box detection from lidar point cloud,” in Computer Vision – ECCV 2018 Workshops, L. Leal-Taixé and S. Roth, Eds. Cham: Springer International Publishing, 2019, pp. 716–728.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017. [Online]. Available: https://arxiv.org/abs/1706.03762
- Y. Zeng, D. Zhang, C. Wang, Z. Miao, T. Liu, X. Zhan, D. Hao, and C. Ma, “Lift: Learning 4d lidar image fusion transformer for 3d object detection,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 17 151–17 160.
- N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection with transformers,” CoRR, vol. abs/2005.12872, 2020. [Online]. Available: https://arxiv.org/abs/2005.12872
- F. Ruppel, F. Faion, C. Gläser, and K. Dietmayer, “Transformers for object detection in large point clouds,” 2022. [Online]. Available: https://arxiv.org/abs/2209.15258
- G. K. Erabati and H. Araujo, “Li3detr: A lidar based 3d detection transformer,” 2022. [Online]. Available: https://arxiv.org/abs/2210.15365