Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Supervised Learning Approach for Efficient Resource Allocation with Network Slicing in O-RAN (2401.08861v2)

Published 16 Jan 2024 in cs.NI, cs.LG, cs.NA, and math.NA

Abstract: This paper introduces an innovative approach to the resource allocation problem, aiming to coordinate multiple independent x-applications (xAPPs) for network slicing and resource allocation in the Open Radio Access Network (O-RAN). Our approach maximizes the weighted throughput among user equipment (UE) and allocates physical resource blocks (PRBs). We prioritize two service types: enhanced Mobile Broadband and Ultra-Reliable Low-Latency Communication. Two xAPPs have been designed to achieve this: a power control xAPP for each UE and a PRB allocation xAPP. The method consists of a two-part training phase. The first part uses supervised learning with a Variational Autoencoder trained to regress the power transmission, UE association, and PRB allocation decisions, and the second part uses unsupervised learning with a contrastive loss approach to improve the generalization and robustness of the model. We evaluate the performance by comparing its results to those obtained from an exhaustive search and deep Q-network algorithms and reporting performance metrics for the regression task. The results demonstrate the superior efficiency of this approach in different scenarios among the service types, reaffirming its status as a more efficient and effective solution for network slicing problems compared to state-of-the-art methods. This innovative approach not only sets our research apart but also paves the way for exciting future advancements in resource allocation in O-RAN.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. L. M. Larsen, A. Checko, and H. L. Christiansen, “A survey of the functional splits proposed for 5G mobile crosshaul networks,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 146–172, 2018.
  2. O. Nassef, W. Sun, H. Purmehdi, M. Tatipamula, and T. Mahmoodi, “A survey: Distributed machine learning for 5g and beyond,” Computer Networks, vol. 207, p. 108820, 2022.
  3. C.-X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, Y. Chen, H. Haas et al., “On the road to 6g: Visions, requirements, key technologies and testbeds,” IEEE Communications Surveys & Tutorials, 2023.
  4. M. K. Shehzad, L. Rose, M. M. Butt, I. Z. Kovács, M. Assaad, and M. Guizani, “Artificial intelligence for 6g networks: Technology advancement and standardization,” IEEE Vehicular Technology Magazine, vol. 17, no. 3, pp. 16–25, 2022.
  5. “O-RAN: Towards an Open and Smart RAN, O-RAN Alliance White Paper, October 2018, O-RAN Alliance.”
  6. S. Zhang, “An overview of network slicing for 5g,” IEEE Wireless Communications, vol. 26, no. 3, pp. 111–117, 2019.
  7. A. S. Abdalla, P. S. Upadhyaya, V. K. Shah, and V. Marojevic, “Toward next generation open radio access networks: What o-ran can and cannot do!” IEEE Network, vol. 36, no. 6, pp. 206–213, 2022.
  8. L. Tang, “Multi-dimensional resource allocation algorithm for end-to-end network slicing,” 2023.
  9. A. Oliveira and T. Vazão, “Towards green machine learning for resource allocation in beyond 5g ran slicing,” Computer Networks, p. 109877, 2023.
  10. P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, “5g wireless network slicing for embb, urllc, and mmtc: A communication-theoretic view,” Ieee Access, vol. 6, pp. 55 765–55 779, 2018.
  11. J. Huang, F. Yang, C. Chakraborty, Z. Guo, H. Zhang, L. Zhen, and K. Yu, “Opportunistic capacity based resource allocation for 6g wireless systems with network slicing,” Future Generation Computer Systems, vol. 140, pp. 390–401, 2023.
  12. M. Al-Ali and E. Yaacoub, “Resource allocation scheme for embb and urllc coexistence in 6g networks,” Wireless Networks, pp. 1–20, 2023.
  13. “Deploying 5G networks, 2020, Nokia corporation. Available at: https://www.nokia.com/networks/5g/mo bile/5g-resources/.”
  14. L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, “Intelligence and learning in o-ran for data-driven nextg cellular networks,” IEEE Communications Magazine, vol. 59, no. 10, pp. 21–27, 2021.
  15. M. K. Motalleb, V. Shah-Mansouri, S. Parsaeefard, and O. L. A. López, “Resource allocation in an open ran system using network slicing,” IEEE Transactions on Network and Service Management, vol. 20, no. 1, pp. 471–485, 2022.
  16. L. Feng, Y. Zi, W. Li, F. Zhou, P. Yu, and M. Kadoch, “Dynamic resource allocation with ran slicing and scheduling for urllc and embb hybrid services,” Ieee Access, vol. 8, pp. 34 538–34 551, 2020.
  17. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” in International conference on machine learning.   PMLR, 2020, pp. 1597–1607.
  18. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
  19. M. K. Motalleb, V. Shah-Mansouri, and S. N. Naghadeh, “Joint power allocation and network slicing in an open ran system,” arXiv preprint arXiv:1911.01904, 2019.
  20. N. Kazemifard and V. Shah-Mansouri, “Minimum delay function placement and resource allocation for open ran (o-ran) 5g networks,” Computer Networks, vol. 188, p. 107809, 2021.
  21. C. Benzaïd, T. Taleb, A. Sami, and O. Hireche, “Fortisedos: A deep transfer learning-empowered economical denial of sustainability detection framework for cloud-native network slicing,” IEEE Transactions on Dependable and Secure Computing, 2023.
  22. C. Benzaïd, T. Taleb, and J. Song, “Ai-based autonomic and scalable security management architecture for secure network slicing in b5g,” IEEE Network, vol. 36, no. 6, pp. 165–174, 2022.
  23. Y. Azimi, S. Yousefi, H. Kalbkhani, and T. Kunz, “Applications of machine learning in resource management for ran-slicing in 5g and beyond networks: A survey,” IEEE Access, vol. 10, pp. 106 581–106 612, 2022.
  24. C. Bektas, D. Overbeck, and C. Wietfeld, “Samus: Slice-aware machine learning-based ultra-reliable scheduling,” in ICC 2021-IEEE International Conference on Communications.   IEEE, 2021, pp. 1–6.
  25. J. Li, X. Zhang, J. Zhang, J. Wu, Q. Sun, and Y. Xie, “Deep reinforcement learning-based mobility-aware robust proactive resource allocation in heterogeneous networks,” IEEE Transactions on Cognitive Communications and Networking, vol. 6, no. 1, pp. 408–421, 2019.
  26. W. Wu, N. Chen, C. Zhou, M. Li, X. Shen, W. Zhuang, and X. Li, “Dynamic ran slicing for service-oriented vehicular networks via constrained learning,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 7, pp. 2076–2089, 2020.
  27. J. A. Ayala-Romero, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez, A. Banchs, and J. J. Alcaraz, “vrain: Deep learning based orchestration for computing and radio resources in vrans,” IEEE Transactions on Mobile Computing, vol. 21, no. 7, pp. 2652–2670, 2020.
  28. X. Wang, J. D. Thomas, R. J. Piechocki, S. Kapoor, R. Santos-Rodríguez, and A. Parekh, “Self-play learning strategies for resource assignment in open-ran networks,” Computer Networks, vol. 206, p. 108682, 2022.
  29. A. Ndikumana, K. K. Nguyen, and M. Cheriet, “Federated learning assisted deep q-learning for joint task offloading and fronthaul segment routing in open ran,” IEEE Transactions on Network and Service Management, 2023.
  30. S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Federated learning for ultra-reliable low-latency v2v communications,” in 2018 IEEE global communications conference (GLOBECOM).   IEEE, 2018, pp. 1–7.
  31. M. Elsayed and M. Erol-Kantarci, “Reinforcement learning-based joint power and resource allocation for urllc in 5g,” in 2019 IEEE Global Communications Conference (GLOBECOM).   IEEE, 2019, pp. 1–6.
  32. T. Erpek, A. Abdelhadi, and T. C. Clancy, “An optimal application-aware resource block scheduling in lte,” in 2015 International Conference on Computing, Networking and Communications (ICNC).   IEEE, 2015, pp. 275–279.
  33. A. Filali, B. Nour, S. Cherkaoui, and A. Kobbane, “Communication and computation o-ran resource slicing for urllc services using deep reinforcement learning,” IEEE Communications Standards Magazine, vol. 7, no. 1, pp. 66–73, 2023.
  34. A. Feriani and E. Hossain, “Single and multi-agent deep reinforcement learning for ai-enabled wireless networks: A tutorial,” IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp. 1226–1252, 2021.
  35. K. Suh, S. Kim, Y. Ahn, S. Kim, H. Ju, and B. Shim, “Deep reinforcement learning-based network slicing for beyond 5g,” IEEE Access, vol. 10, pp. 7384–7395, 2022.
  36. J. Fan, Z. Wang, Y. Xie, and Z. Yang, “A theoretical analysis of deep q-learning,” in Learning for dynamics and control.   PMLR, 2020, pp. 486–489.
  37. V. Lima, M. Eisen, K. Gatsis, and A. Ribeiro, “Resource allocation in large-scale wireless control systems with graph neural networks,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 2634–2641, 2020.
  38. P. E. Iturria-Rivera, H. Zhang, H. Zhou, S. Mollahasani, and M. Erol-Kantarci, “Multi-agent team learning in virtualized open radio access networks (o-ran),” Sensors, vol. 22, no. 14, p. 5375, 2022.
  39. N. Hammami and K. K. Nguyen, “On-policy vs. off-policy deep reinforcement learning for resource allocation in open radio access network,” in 2022 IEEE Wireless Communications and Networking Conference (WCNC).   IEEE, 2022, pp. 1461–1466.
  40. Q. Wang, Y. Liu, Y. Wang, X. Xiong, J. Zong, J. Wang, and P. Chen, “Resource allocation based on radio intelligence controller for open ran towards 6g,” IEEE Access, 2023.
  41. D. P. Kingma, M. Welling et al., “An introduction to variational autoencoders,” Foundations and Trends® in Machine Learning, vol. 12, no. 4, pp. 307–392, 2019.
  42. U. Jain, Z. Zhang, and A. G. Schwing, “Creativity: Generating diverse questions using variational autoencoders,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 6485–6494.
  43. Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted mmse approach to distributed sum-utility maximization for a mimo interfering broadcast channel,” IEEE Transactions on Signal Processing, vol. 59, no. 9, pp. 4331–4340, 2011.
  44. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  45. A. Grant, “Rayleigh fading multi-antenna channels,” EURASIP Journal on Advances in Signal Processing, vol. 2002, pp. 1–14, 2002.
  46. A. J. Goldsmith and S.-G. Chua, “Adaptive coded modulation for fading channels,” IEEE Transactions on communications, vol. 46, no. 5, pp. 595–602, 1998.
  47. C. Geng, N. Naderializadeh, A. S. Avestimehr, and S. A. Jafar, “On the optimality of treating interference as noise,” IEEE Transactions on Information Theory, vol. 61, no. 4, pp. 1753–1767, 2015.
  48. N. Naderializadeh and A. S. Avestimehr, “Itlinq: A new approach for spectrum sharing in device-to-device communication systems,” IEEE journal on selected areas in communications, vol. 32, no. 6, pp. 1139–1151, 2014.
  49. N. Naderializadeh, “Contrastive self-supervised learning for wireless power control,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2021, pp. 4965–4969.
  50. K. Janocha and W. M. Czarnecki, “On loss functions for deep neural networks in classification,” arXiv preprint arXiv:1702.05659, 2017.
  51. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,” Advances in neural information processing systems, vol. 32, 2019.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com