Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Counterfactuals to Improve Causal Inferences from Visualizations (2401.08411v1)

Published 16 Jan 2024 in cs.HC

Abstract: Traditional approaches to data visualization have often focused on comparing different subsets of data, and this is reflected in the many techniques developed and evaluated over the years for visual comparison. Similarly, common workflows for exploratory visualization are built upon the idea of users interactively applying various filter and grouping mechanisms in search of new insights. This paradigm has proven effective at helping users identify correlations between variables that can inform thinking and decision-making. However, recent studies show that consumers of visualizations often draw causal conclusions even when not supported by the data. Motivated by these observations, this article highlights recent advances from a growing community of researchers exploring methods that aim to directly support visual causal inference. However, many of these approaches have their own limitations which limit their use in many real-world scenarios. This article therefore also outlines a set of key open challenges and corresponding priorities for new research to advance the state of the art in visual causal inference.

Citations (8)

Summary

We haven't generated a summary for this paper yet.