Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Applications of multiple orthogonal polynomials with hypergeometric moment generating functions (2401.08312v2)

Published 16 Jan 2024 in math.CA and math.NT

Abstract: We investigate several families of multiple orthogonal polynomials associated with weights for which the moment generating functions are hypergeometric series with slightly varying parameters. The weights are supported on the unit interval, the positive real line, or the unit circle and the multiple orthogonal polynomials are generalizations of the Jacobi, Laguerre or Bessel orthogonal polynomials. We give explicit formulas for the type I and type II multiple orthogonal polynomials and study some of their properties. In particular, we describe the asymptotic distribution of the (scaled) zeros of the type II multiple orthogonal polynomials via the free convolution. Essential to our overall approach is the use of the Mellin transform. Finally, we discuss two applications. First, we show that the multiple orthogonal polynomials appear naturally in the study of the squared singular values of (mixed) products of truncated unitary random matrices and Ginibre matrices. Secondly, we use the multiple orthogonal polynomials to simultaneously approximate certain hypergeometric series and to provide an explicit proof of their $\mathbb{Q}$-linear independence.

Citations (4)

Summary

We haven't generated a summary for this paper yet.