Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Structure of an Inversive Pseudorandom Number Generator over Ring $\mathbb{Z}_{p^{e}}$ (2401.08161v1)

Published 16 Jan 2024 in cs.DM

Abstract: Generating random and pseudorandom numbers with a deterministic system is a long-standing challenge in theoretical research and engineering applications. Several pseudorandom number generators based on the inversive congruential method have been designed as attractive alternatives to those based on the classical linear congruential method. This paper discloses the least period of sequences generated by iterating an inversive pseudorandom number generator over the ring $\mathbb{Z}_e$ by transforming it into a two-order linear congruential recurrence relation. Depending on whether the sequence is periodic or ultimately periodic, all states in the domain can be attributed to two types of objects: some cycles of different lengths and one unilateral connected digraph whose structure remains unchanged concerning parameter $e$. The graph structure of the generator over the ring $\mathbb{Z}_e$ is precisely disclosed with rigorous theoretical analysis and verified experimentally. The adopted analysis methodology can be extended to study the graph structure of other nonlinear maps.

Summary

We haven't generated a summary for this paper yet.